Loading [MathJax]/extensions/MathZoom.js
Displaying 141 –
160 of
213
For a continuous map f on a compact metric space (X,d), a set D ⊂ X is internally chain transitive if for every x,y ∈ D and every δ > 0 there is a sequence of points ⟨x = x₀,x₁,...,xₙ = y⟩ such that for 0 ≤ i< n. In this paper, we prove that for tent maps with periodic critical point, every closed, internally chain transitive set is necessarily an ω-limit set. Furthermore, we show that there are at least countably many tent maps with non-recurrent critical point for which there is a closed,...
Using dimension group tools and Bratteli-Vershik representations of minimal Cantor systems we prove that a minimal Cantor system and a Sturmian subshift are topologically conjugate if and only if they are orbit equivalent and Kakutani equivalent.
Recently a new invariant of K-theoretic nature has emerged which is potentially very useful for the study of symbolic systems. We give an outline of the theory behind this invariant. Then we demonstrate the relevance and power of the invariant, focusing on the families of substitution minimal systems and Toeplitz flows.
We deal with a subshift of finite type and an equilibrium state μ for a Hölder continuous function. Let αⁿ be the partition into cylinders of length n. We compute (in particular we show the existence of the limit) , where is the element of the partition containing and τₙ(x) is the return time of the trajectory of x to the cylinder αⁿ(x).
Nous étudions certaines propriétés combinatoires, ergodiques et arithmétiques du point fixe de la substitution de Tribonacci (introduite par G. Rauzy) et de la rotation du tore qui lui est associée. Nous établissons une généralisation géométrique du théorème des trois distances et donnons une formule explicite pour la fonction de récurrence du point fixe. Nous donnons des propriétés d’approximation diophantienne du vecteur de la rotation de : nous montrons, que pour une norme adaptée, la suite...
Two dynamical deformation theories are presented – one for surface homeomorphisms, called pruning, and another for graph endomorphisms, called kneading – both giving conditions under which all of the dynamics in an open set can be destroyed, while leaving the dynamics unchanged elsewhere. The theories are related to each other and to
Thurston’s classification of surface homeomorphisms up to isotopy.
Entropy-expanding transformations define a class of smooth dynamics generalizing interval maps with positive entropy and expanding maps. In this work, we build a symbolic representation of those dynamics in terms of puzzles (in Yoccoz’s sense), thus avoiding a connectedness condition, hard to satisfy in higher dimensions. Those puzzles are controled by a «constraint entropy» bounded by the hypersurface entropy of the aforementioned transformations.The analysis of those puzzles rests on a «stably...
Given a 0-1 sequence x in which both letters occur with density 1/2, do there exist arbitrarily long arithmetic progressions along which x reads 010101...? We answer the above negatively by showing that a certain regular triadic Toeplitz sequence does not have this property. On the other hand, we prove that if x is a generalized binary Morse sequence then each block can be read in x along some arithmetic progression.
Let (Σ,ϱ) be the one-sided symbolic space (with two symbols), and let σ be the shift on Σ. We use A(·), R(·) to denote the set of almost periodic points and the set of recurrent points respectively. In this paper, we prove that the one-sided shift is strongly chaotic (in the sense of Schweizer-Smítal) and there is a strongly chaotic set 𝒥 satisfying 𝒥 ⊂ R(σ)-A(σ).
We discuss the relation between the growth of the resolvent near the unit circle and bounds for the powers of the operator. Resolvent conditions like those of Ritt and Kreiss are combined with growth conditions measuring the resolvent as a meromorphic function.
A G-shift of finite type (G-SFT) is a shift of finite type which commutes with the continuous action of a finite group G. For irreducible G-SFTs we classify right closing almost conjugacy, answering a question of Bill Parry.
The topology and combinatorial structure of the Mandelbrot set (of degree d ≥ 2) can be studied using symbolic dynamics. Each parameter is mapped to a kneading sequence, or equivalently, an internal address; but not every such sequence is realized by a parameter in . Thus the abstract Mandelbrot set is a subspace of a larger, partially ordered symbol space, . In this paper we find an algorithm to construct “visible trees” from symbolic sequences which works whether or not the sequence is realized....
The main result of this paper is that a map f: X → X which has shadowing and for which the space of ω-limits sets is closed in the Hausdorff topology has the property that a set A ⊆ X is an ω-limit set if and only if it is closed and internally chain transitive. Moreover, a map which has the property that every closed internally chain transitive set is an ω-limit set must also have the property that the space of ω-limit sets is closed. As consequences of this result, we show that interval maps with...
We show that the class of expansive actions with P.O.T.P. is wider than the class of actions topologically hyperbolic in some direction . Our main tool is an extension of a result by Walters to the multi-dimensional symbolic dynamics case.
Currently displaying 141 –
160 of
213