Homotopical dynamics II : Hopf invariants, smoothings and the Morse complex
In this paper we will be interested in results surrounding the following basic question: what are the homotopy properties that one can extract from a gradient flow? We approach this question by decomposing it into three parts: 1. Identify what are the homotopical objects that are provided by the flow (e.g. critical points, Conley indexes). 2. Discover what are the relations that have to be satisfied by these objects (e.g. Morse inequalities, Lusternik-Schnirelmann type inequalities). 3. (The Realizability...
On a Morse decomposition of an isolated invariant set of a homeomorphism (discrete dynamical system) there are partial orderings defined by the homeomorphism. These are called admissible orderings of the Morse decomposition. We prove the existence of index filtrations for admissible total orderings of a Morse decomposition and introduce the connection matrix in this case.
We study the problem of existence of orbits connecting stationary points for the nonlinear heat and strongly damped wave equations being at resonance at infinity. The main difficulty lies in the fact that the problems may have no solutions for general nonlinearity. To address this question we introduce geometrical assumptions for the nonlinear term and use them to prove index formulas expressing the Conley index of associated semiflows. We also prove that the geometrical assumptions are generalizations...
A multiplicative structure in the cohomological version of Conley index is described following a joint paper by the author with K. Gęba and W. Uss. In the case of equivariant flows we apply a normalization procedure known from equivariant degree theory and we propose a new continuation invariant. The theory is applied then to obtain a mountain pass type theorem. Another illustrative application is a result on multiple bifurcations for some elliptic PDE.
Let Ω be a bounded domain in with smooth boundary. Consider the following elliptic system: in Ω, in Ω, u = 0, v = 0 in ∂Ω. (ES) We assume that H is an even "-"-type Hamiltonian function whose first order partial derivatives satisfy appropriate growth conditions. We show that if (0,0) is a hyperbolic solution of (ES), then (ES) has at least 2|μ| nontrivial solutions, where μ = μ(0,0) is the renormalized Morse index of (0,0). This proves a conjecture by Angenent and van der Vorst.
In this note we present the main ideas of the theory of the Conley index over a base space introduced in the papers [7, 8]. The theory arised as an attempt to solve two questions concerning the classical Conley index. In the definition of the index, the exit set of an isolating neighborhood is collapsed to a point. Some information is lost on this collapse. In particular, topological information about how a set sits in the phase space is lost. The first question addressed is how to retain some of...
We consider the parabolic equation (P) , (t,x) ∈ ℝ₊ × ℝⁿ, and the corresponding semiflow π in the phase space H¹. We give conditions on the nonlinearity F(x,u), ensuring that all bounded sets of H¹ are π-admissible in the sense of Rybakowski. If F(x,u) is asymptotically linear, under appropriate non-resonance conditions, we use Conley’s index theory to prove the existence of nontrivial equilibria of (P) and of heteroclinic trajectories joining some of these equilibria. The results obtained extend...
The Conley index theory was introduced by Charles C. Conley (1933-1984) in [C1] and a major part of the foundations of the theory was developed in Ph. D. theses of his students, see for example [Ch, Ku, Mon]. The Conley index associates the homotopy type of some pointed space to an isolated invariant set of a flow, just as the fixed point index associates an integer number to an isolated set of fixed points of a continuous map. Examples of isolated invariant sets arise naturally in the critical...
In [1], the concept of singular isolating neighborhoods for a continuous family of continuous maps was presented. The work was based on Conley's result for a continuous family of continuous flows (cf. [2]). In this note, we study a particular family of continuous maps to illustrate the results in [1].
We show that all periods of periodic points forced by a pattern for interval maps are preserved for high-dimensional maps if the multidimensional perturbation is small. We also show that if an interval map has a fixed point associated with a homoclinic-like orbit then any small multidimensional perturbation has periodic points of all periods.
We introduce the cohomological Conley type index theory for multivalued flows generated by vector fields which are compact and convex-valued perturbations of some linear operators.
Consider the ordinary differential equation (1) ẋ = Lx + K(x) on an infinite-dimensional Hilbert space E, where L is a bounded linear operator on E which is assumed to be strongly indefinite and K: E → E is a completely continuous but not necessarily locally Lipschitzian map. Given any isolating neighborhood N relative to equation (1) we define a Conley-type index of N. This index is based on Galerkin approximation of equation (1) by finite-dimensional ODEs and extends...
We prove that the Poincaré map has at least fixed points (whose trajectories are contained inside the segment W) where the homeomorphism is given by the segment W.
Soit un homéomorphisme du plan qui préserve l’orientation et qui a un point périodique de période . Nous montrons qu’il existe un point fixe tel que le nombre d’enlacement de et ne soit pas nul. En d’autres termes, le nombre de rotation de l’orbite de dans l’anneau est un élément non nul de . Ceci donne une réponse positive à une question posée par John Franks.