Connecting fast-slow systems and Conley index theory via transversality.
We introduce connection graphs for both continuous and discrete dynamical systems. We prove the existence of connection graphs for Morse decompositions of isolated invariant sets.
This paper is an introduction to connection and transition matrices in the Conley index theory for flows. Basic definitions and simple examples are discussed.
We discuss the ideas of Morse decompositions and index filtrations for isolated invariant sets for both single-valued and multi-valued maps. We introduce the definition of connection matrix pairs and present the theorem of their existence. Connection matrix pair theory for multi-valued maps is used to show that connection matrix pairs obey the continuation property. We conclude by addressing applications to numerical analysis. This paper is primarily an overview of the papers [R1] and [R2].
In [C] and [F1] the connection matrix theory for Morse decomposition is developed in the case of continuous dynamical systems. Our purpose is to study the case of discrete time dynamical systems. The connection matrices are matrices between the homology indices of the sets in the Morse decomposition. They provide information about the structure of the Morse decomposition; in particular, they give an algebraic condition for the existence of connecting orbit set between different Morse sets.
Étant donné un automorphisme d’un groupe libre et un représentant topologique train-track de son inverse, on peut construire un arbre réel appelé arbre répulsif de . Le groupe libre agit sur par isométries. La dynamique engendrée par peut être représentée par l’action du groupe libre restreinte à un sous-ensemble compact bien choisi du complété métrique de . Cet article construit ce sous-ensemble sur une classe d’exemples en introduisant des opérations appelées substitutions d’arbre ;...
This paper is a study of the global structure of the attractors of a dynamical system. The dynamical system is associated with an oriented graph called a Symbolic Image of the system. The symbolic image can be considered as a finite discrete approximation of the dynamical system flow. Investigation of the symbolic image provides an opportunity to localize the attractors of the system and to estimate their domains of attraction. A special sequence of symbolic images is considered in order to obtain...
We demonstrate that the set of topologically distinct inverse limit spaces of tent maps with a Cantor set for its postcritical ω-limit set has cardinality of the continuum. The set of folding points (i.e. points at which the space is not homeomorphic to the product of a zero-dimensional set and an arc) of each of these spaces is also a Cantor set.
We prove that the index defined by Szymczak in [9] has an additivity property. Moreover we give an abstract theorem for extending coproducts from an initial category to the Szymczak category, which provides a setting for the proof of additivity.
We add a sufficient condition for validity of Propo- sition 4.10 in the paper Frougny et al. (2004). This condition is not a necessary one, it is nevertheless convenient, since anyway most of the statements in the paper Frougny et al. (2004) use it.
We add a sufficient condition for validity of Propo- sition 4.10 in the paper Frougny et al. (2004). This condition is not a necessary one, it is nevertheless convenient, since anyway most of the statements in the paper Frougny et al. (2004) use it.
A pair (X, α) is a partial dynamical system if X is a compact topological space and α: Δ→ X is a continuous mapping such that Δ is open. Additionally we assume here that Δ is closed and α(Δ) is open. Such systems arise naturally while dealing with commutative C *-dynamical systems. In this paper we construct and investigate a universal C *-algebra C *(X,α) which agrees with the partial crossed product [10] in the case α is injective, and with the crossed product by a monomorphism [22] in the case...
Michael Handel proved the existence of a fixed point for an orientation preserving homeomorphism of the open unit disk that can be extended to the closed disk, provided that it has points whose orbits form an oriented cycle of links at infinity. More recently, the author generalized Handel's theorem to a wider class of cycles of links. In this paper we complete this topic describing exactly which are all the cycles of links forcing the existence of a fixed point.