Displaying 21 – 40 of 61

Showing per page

Commutativity and non-commutativity of topological sequence entropy

Francisco Balibrea, Jose Salvador Cánovas Peña, Víctor Jiménez López (1999)

Annales de l'institut Fourier

In this paper we study the commutativity property for topological sequence entropy. We prove that if X is a compact metric space and f , g : X X are continuous maps then h A ( f g ) = h A ( g f ) for every increasing sequence A if X = [ 0 , 1 ] , and construct a counterexample for the general case. In the interim, we also show that the equality h A ( f ) = h A ( f | n 0 f n ( X ) ) is true if X = [ 0 , 1 ] but does not necessarily hold if X is an arbitrary compact metric space.

Commuting functions and simultaneous Abel equations

W. Jarczyk, K. Łoskot, M. C. Zdun (1994)

Annales Polonici Mathematici

The system of Abel equations α(ft(x)) = α(x) + λ(t), t ∈ T, is studied under the general assumption that f t are pairwise commuting homeomorphisms of a real interval and have no fixed points (T is an arbitrary non-empty set). A result concerning embeddability of rational iteration groups in continuous groups is proved as a simple consequence of the obtained theorems.

Compact Global Chaotic Attractors of Discrete Control Systems

David Cheban (2014)

Nonautonomous Dynamical Systems

The paper is dedicated to the study of the problem of existence of compact global chaotic attractors of discrete control systems and to the description of its structure. We consider so called switched systems with discrete time xn+1 = fν(n)(xn), where ν : ℤ+ ⃗ {1,2,...,m}. If m ≥ 2 we give sufficient conditions (the family M := {f1,f2,...,fm} of functions is contracting in the extended sense) for the existence of a compact global chaotic attractor. We study this problem in the framework of non-autonomous...

Complexity of Hartman sequences

Christian Steineder, Reinhard Winkler (2005)

Journal de Théorie des Nombres de Bordeaux

Let T : x x + g be an ergodic translation on the compact group C and M C a continuity set, i.e. a subset with topological boundary of Haar measure 0. An infinite binary sequence a : { 0 , 1 } defined by a ( k ) = 1 if T k ( 0 C ) M and a ( k ) = 0 otherwise, is called a Hartman sequence. This paper studies the growth rate of P a ( n ) , where P a ( n ) denotes the number of binary words of length n occurring in a . The growth rate is always subexponential and this result is optimal. If T is an ergodic translation x x + α ...

Complexity of infinite words associated with beta-expansions

Christiane Frougny, Zuzana Masáková, Edita Pelantová (2004)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We study the complexity of the infinite word u β associated with the Rényi expansion of 1 in an irrational base β > 1 . When β is the golden ratio, this is the well known Fibonacci word, which is sturmian, and of complexity ( n ) = n + 1 . For β such that d β ( 1 ) = t 1 t 2 t m is finite we provide a simple description of the structure of special factors of the word u β . When t m = 1 we show that ( n ) = ( m - 1 ) n + 1 . In the cases when t 1 = t 2 = = t m - 1 or t 1 > max { t 2 , , t m - 1 } we show that the first difference of the complexity function ( n + 1 ) - ( n ) takes value in { m - 1 , m } for every n , and consequently we determine...

Complexity of infinite words associated with beta-expansions

Christiane Frougny, Zuzana Masáková, Edita Pelantová (2010)

RAIRO - Theoretical Informatics and Applications

We study the complexity of the infinite word uβ associated with the Rényi expansion of 1 in an irrational base β > 1. When β is the golden ratio, this is the well known Fibonacci word, which is Sturmian, and of complexity C(n) = n + 1. For β such that dβ(1) = t1t2...tm is finite we provide a simple description of the structure of special factors of the word uβ. When tm=1 we show that C(n) = (m - 1)n + 1. In the cases when t1 = t2 = ... tm-1or t1 > max{t2,...,tm-1} we show that the first difference of...

Computing explicitly topological sequence entropy: the unimodal case

Victor Jiménez López, Jose Salvador Cánovas Peña (2002)

Annales de l’institut Fourier

Let W ( I ) denote the family of continuous maps f from an interval I = [ a , b ] into itself such that (1) f ( a ) = f ( b ) { a , b } ; (2) they consist of two monotone pieces; and (3) they have periodic points of periods exactly all powers of 2 . The main aim of this paper is to compute explicitly the topological sequence entropy h D ( f ) of any map f W ( I ) respect to the sequence D = ( 2 m - 1 ) m = 1 .

Conformal measures for rational functions revisited

Manfred Denker, R. Mauldin, Z. Nitecki, Mariusz Urbański (1998)

Fundamenta Mathematicae

We show that the set of conical points of a rational function of the Riemann sphere supports at most one conformal measure. We then study the problem of existence of such measures and their ergodic properties by constructing Markov partitions on increasing subsets of sets of conical points and by applying ideas of the thermodynamic formalism.

Conley index for set-valued maps: from theory to computation

Tomasz Kaczynski (1999)

Banach Center Publications

Recent results on the Conley index theory for discrete multi-valued dynamical systems with their consequences for the computation of the index for representable maps are recapitulated. The terminology is simplified with respect to previous presentations, some superfluous hypotheses are abandoned and some conclusions are proved in a simpler way.

Conley index in Hilbert spaces and a problem of Angenent and van der Vorst

Marek Izydorek, Krzysztof P. Rybakowski (2002)

Fundamenta Mathematicae

In a recent paper [9] we presented a Galerkin-type Conley index theory for certain classes of infinite-dimensional ODEs without the uniqueness property of the Cauchy problem. In this paper we show how to apply this theory to strongly indefinite elliptic systems. More specifically, we study the elliptic system - Δ u = v H ( u , v , x ) in Ω, - Δ v = u H ( u , v , x ) in Ω, u = 0, v = 0 in ∂Ω, (A1) on a smooth bounded domain Ω in N for "-"-type Hamiltonians H of class C² satisfying subcritical growth assumptions on their first order derivatives....

Conley type index and Hamiltonian inclusions

Zdzisław Dzedzej (2010)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

This paper is based mainly on the joint paper with W. Kryszewski [Dzedzej, Z., Kryszewski, W.: Conley type index applied to Hamiltonian inclusions. J. Math. Anal. Appl. 347 (2008), 96–112.], where cohomological Conley type index for multivalued flows has been applied to prove the existence of nontrivial periodic solutions for asymptotically linear Hamiltonian inclusions. Some proofs and additional remarks concerning definition of the index and special cases are given.

Connectedness of fractals associated with Arnoux–Rauzy substitutions

Valérie Berthé, Timo Jolivet, Anne Siegel (2014)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Rauzy fractals are compact sets with fractal boundary that can be associated with any unimodular Pisot irreducible substitution. These fractals can be defined as the Hausdorff limit of a sequence of compact sets, where each set is a renormalized projection of a finite union of faces of unit cubes. We exploit this combinatorial definition to prove the connectedness of the Rauzy fractal associated with any finite product of three-letter Arnoux–Rauzy substitutions.

Currently displaying 21 – 40 of 61