Previous Page 2

Displaying 21 – 31 of 31

Showing per page

Modular dynamical systems on networks

Lee DeVille, Eugene Lerman (2015)

Journal of the European Mathematical Society

We propose a new framework for the study of continuous time dynamical systems on networks. We view such dynamical systems as collections of interacting control systems. We show that a class of maps between graphs called graph fibrations give rise to maps between dynamical systems on networks. This allows us to produce conjugacy between dynamical systems out of combinatorial data. In particular we show that surjective graph fibrations lead to synchrony subspaces in networks. The injective graph fibrations,...

Modulus of analytic classification for the generic unfolding of a codimension 1 resonant diffeomorphism or resonant saddle

Christiane Rousseau, Colin Christopher (2007)

Annales de l’institut Fourier

We consider germs of one-parameter generic families of resonant analytic diffeomorphims and we give a complete modulus of analytic classification by means of the unfolding of the Écalle modulus. We describe the parametric resurgence phenomenon. We apply this to give a complete modulus of orbital analytic classification for the unfolding of a generic resonant saddle of a 2-dimensional vector field by means of the unfolding of its holonomy map. Here again the modulus is an unfolding of the Martinet-Ramis...

Morales-Ramis Theorems via Malgrange pseudogroup

Guy Casale (2009)

Annales de l’institut Fourier

In this article we give an obstruction to integrability by quadratures of an ordinary differential equation on the differential Galois group of variational equations of any order along a particular solution. In Hamiltonian situation the condition on the Galois group gives Morales-Ramis-Simó theorem. The main tools used are Malgrange pseudogroup of a vector field and Artin approximation theorem.

Moyenne de localisation fréquentielle des paquets d'ondelettes.

Ai Hua Fan (1998)

Revista Matemática Iberoamericana

En utilisant le théorème de Ruelle d'opérateur de transfert, nous démontrons que la moyenne 2-k Σn=02k-1 ||^wn||L1 de la localisation fréquentielle pour les paquets d'ondelettes admet un équivalent de la forme cρk (c > 0, 1 < ρ < √2). Cela améliore une inégalité antérieurement obtenue par Coifman, Meyer et Wickerhauser. Des estimations numériques de ρ sont obtenues pour des filtres de Daubechies.

Multifractal analysis for Birkhoff averages on Lalley-Gatzouras repellers

Henry W. J. Reeve (2011)

Fundamenta Mathematicae

We consider the multifractal analysis for Birkhoff averages of continuous potentials on a class of non-conformal repellers corresponding to the self-affine limit sets studied by Lalley and Gatzouras. A conditional variational principle is given for the Hausdorff dimension of the set of points for which the Birkhoff averages converge to a given value. This extends a result of Barral and Mensi to certain non-conformal maps with a measure dependent Lyapunov exponent.

Multifractal dimensions for invariant subsets of piecewise monotonic interval maps

Franz Hofbauer, Peter Raith, Thomas Steinberger (2003)

Fundamenta Mathematicae

The multifractal generalizations of Hausdorff dimension and packing dimension are investigated for an invariant subset A of a piecewise monotonic map on the interval. Formulae for the multifractal dimension of an ergodic invariant measure, the essential multifractal dimension of A, and the multifractal Hausdorff dimension of A are derived.

Multivalued Lyapunov functions for homeomorphisms of the 2-torus

Patrice Le Calvez (2006)

Fundamenta Mathematicae

Let F be a homeomorphism of 𝕋² = ℝ²/ℤ² isotopic to the identity and f a lift to the universal covering space ℝ². We suppose that κ ∈ H¹(𝕋²,ℝ) is a cohomology class which is positive on the rotation set of f. We prove the existence of a smooth Lyapunov function of f whose derivative lifts a non-vanishing smooth closed form on 𝕋² whose cohomology class is κ.

Currently displaying 21 – 31 of 31

Previous Page 2