Displaying 881 – 900 of 952

Showing per page

Virtually repelling fixed point.

Xavier Buff (2003)

Publicacions Matemàtiques

In this article, we study the notion oí virtually repelling fixed point. We first give a definition and an interpretation of it. We then prove that most proper holomorphic mappings f: U -> V with U contained in V have at least one virtually repelling fixed point.

Waiting for long excursions and close visits to neutral fixed points of null-recurrent ergodic maps

Roland Zweimüller (2008)

Fundamenta Mathematicae

We determine, for certain ergodic infinite measure preserving transformations T, the asymptotic behaviour of the distribution of the waiting time for an excursion (from some fixed reference set of finite measure) of length larger than l as l → ∞, generalizing a renewal-theoretic result of Lamperti. This abstract distributional limit theorem applies to certain weakly expanding interval maps, where it clarifies the distributional behaviour of hitting times of shrinking neighbourhoods of neutral fixed...

Which electric fields are realizable in conducting materials?

Marc Briane, Graeme W. Milton, Andrejs Treibergs (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we study the realizability of a given smooth periodic gradient field ∇u defined in Rd, in the sense of finding when one can obtain a matrix conductivity σ such that σ∇u is a divergence free current field. The construction is shown to be always possible locally in Rd provided that ∇u is non-vanishing. This condition is also necessary in dimension two but not in dimension three. In fact the realizability may fail for non-regular gradient fields, and in general the conductivity cannot...

Currently displaying 881 – 900 of 952