Displaying 141 – 160 of 433

Showing per page

Forcing relation on interval patterns

Jozef Bobok (2005)

Fundamenta Mathematicae

We consider-without restriction to the piecewise monotone case-a forcing relation on interval (transitive, roof, bottom) patterns. We prove some basic properties of this type of forcing and explain when it is a partial ordering. Finally, we show how our approach relates to the results known from the literature.

Forcing relation on minimal interval patterns

Jozef Bobok (2001)

Fundamenta Mathematicae

Let ℳ be the set of pairs (T,g) such that T ⊂ ℝ is compact, g: T → T is continuous, g is minimal on T and has a piecewise monotone extension to convT. Two pairs (T,g),(S,f) from ℳ are equivalent if the map h: orb(minT,g) → orb(minS,f) defined for each m ∈ ℕ₀ by h ( g m ( m i n T ) ) = f m ( m i n S ) is increasing on orb(minT,g). An equivalence class of this relation-a minimal (oriented) pattern A-is exhibited by a continuous interval map f:I → I if there is a set T ⊂ I such that (T,f|T) = (T,f) ∈ A. We define the forcing relation on...

General construction of non-dense disjoint iteration groups on the circle

Krzysztof Ciepliński (2005)

Czechoslovak Mathematical Journal

Let = { F v 𝕊 1 𝕊 1 , v V } be a disjoint iteration group on the unit circle 𝕊 1 , that is a family of homeomorphisms such that F v 1 F v 2 = F v 1 + v 2 for v 1 , v 2 V and each F v either is the identity mapping or has no fixed point ( ( V , + ) is a 2 -divisible nontrivial Abelian group). Denote by L the set of all cluster points of { F v ( z ) , v V } for z 𝕊 1 . In this paper we give a general construction of disjoint iteration groups for which L 𝕊 1 .

Générateurs indépendants pour les systèmes d'isométries de dimension un

Damien Gaboriau (1997)

Annales de l'institut Fourier

Un système fini d’isométries partielles de R est dit à générateurs indépendants si les composés non triviaux fixent au plus un point. On décrit un procédé simple et naturel pour obtenir des générateurs indépendants, sans modifier les orbites, pour tout système sans composante minimale homogène : en prenant la restriction de chaque générateur à un certain sous-intervalle de son domaine. Un système avec une composante minimale homogène ne possède pas de générateurs indépendants.

Generic diffeomorphisms on compact surfaces

Flavio Abdenur, Christian Bonatti, Sylvain Crovisier, Lorenzo J. Díaz (2005)

Fundamenta Mathematicae

We discuss the remaining obstacles to prove Smale's conjecture about the C¹-density of hyperbolicity among surface diffeomorphisms. Using a C¹-generic approach, we classify the possible pathologies that may obstruct the C¹-density of hyperbolicity. We show that there are essentially two types of obstruction: (i) persistence of infinitely many hyperbolic homoclinic classes and (ii) existence of a single homoclinic class which robustly exhibits homoclinic tangencies. In the course of our discussion,...

Geometric rigidity of × m invariant measures

Michael Hochman (2012)

Journal of the European Mathematical Society

Let μ be a probability measure on [ 0 , 1 ] which is invariant and ergodic for T a ( x ) = a x 𝚖𝚘𝚍 1 , and 0 < 𝚍𝚒𝚖 μ < 1 . Let f be a local diffeomorphism on some open set. We show that if E and ( f μ ) E μ E , then f ' ( x ) ± a r : r at μ -a.e. point x f - 1 E . In particular, if g is a piecewise-analytic map preserving μ then there is an open g -invariant set U containing supp μ such that g U is piecewise-linear with slopes which are rational powers of a . In a similar vein, for μ as above, if b is another integer and a , b are not powers of a common integer, and if ν is a T b -invariant...

Geometry of Markov systems and codimension one foliations

Andrzej Biś, Mariusz Urbański (2008)

Annales Polonici Mathematici

We show that the theory of graph directed Markov systems can be used to study exceptional minimal sets of some foliated manifolds. A C¹ smooth embedding of a contracting or parabolic Markov system into the holonomy pseudogroup of a codimension one foliation allows us to describe in detail the h-dimensional Hausdorff and packing measures of the intersection of a complete transversal with exceptional minimal sets.

Green functions on self-similar graphs and bounds for the spectrum of the laplacian

Bernhard Krön (2002)

Annales de l’institut Fourier

Combining the study of the simple random walk on graphs, generating functions (especially Green functions), complex dynamics and general complex analysis we introduce a new method for spectral analysis on self-similar graphs.First, for a rather general, axiomatically defined class of self-similar graphs a graph theoretic analogue to the Banach fixed point theorem is proved. The subsequent results hold for a subclass consisting of “symmetrically” self-similar graphs which however is still more general then...

Groups of real analytic diffeomorphisms of the circle with a finite image under the rotation number function

Yoshifumi Matsuda (2009)

Annales de l’institut Fourier

We consider groups of orientation-preserving real analytic diffeomorphisms of the circle which have a finite image under the rotation number function. We show that if such a group is nondiscrete with respect to the C 1 -topology then it has a finite orbit. As a corollary, we show that if such a group has no finite orbit then each of its subgroups contains either a cyclic subgroup of finite index or a nonabelian free subgroup.

Herman’s last geometric theorem

Bassam Fayad, Raphaël Krikorian (2009)

Annales scientifiques de l'École Normale Supérieure

We present a proof of Herman’s Last Geometric Theorem asserting that if F is a smooth diffeomorphism of the annulus having the intersection property, then any given F -invariant smooth curve on which the rotation number of F is Diophantine is accumulated by a positive measure set of smooth invariant curves on which F is smoothly conjugated to rotation maps. This implies in particular that a Diophantine elliptic fixed point of an area preserving diffeomorphism of the plane is stable. The remarkable...

Currently displaying 141 – 160 of 433