The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 6 of 6

Showing per page

A new proof of a conjecture of Yoccoz

Xavier Buff, Arnaud Chéritat (2011)

Annales de l’institut Fourier

We give a new proof of the following conjecture of Yoccoz: ( C ) ( θ ) log rad Δ ( Q θ ) - Y ( θ ) + C , where Q θ ( z ) = e 2 π i θ z + z 2 , Δ ( Q θ ) is its Siegel disk if Q θ is linearizable (or otherwise), rad Δ ( Q θ ) is the conformal radius of the Siegel disk of Q θ (or 0 if there is none) and Y ( θ ) is Yoccoz’s Brjuno function.In a former article we obtained a first proof based on the control of parabolic explosion. Here, we present a more elementary proof based on Yoccoz’s initial methods.We then extend this result to some new families of polynomials such as z d + c with d > 2 . We also show that...

Currently displaying 1 – 6 of 6

Page 1