A Bäcklund transformation for the Burgers hierarchy.
This paper presents an (infinite-dimensional) geometric framework for control systems, based on infinite jet bundles, where a system is represented by a single vector field and dynamic equivalence (to be precise: equivalence by endogenous dynamic feedback) is conjugation by diffeomorphisms. These diffeomorphisms are very much related to Lie-Bäcklund transformations. It is proved in this framework that dynamic equivalence of single-input systems is the same as static equivalence.
Let F be a germ of analytic transformation of (Cp, 0). We say that F is semi-attractive at the origin, if F'(0) has one eigenvalue equal to 1 and if the other ones are of modulus strictly less than 1. The main result is: either there exists a curve of fixed points, or F - Id has multiplicity k and there exists a domain of attraction with k - 1 petals. We also study the case where F is a global isomorphism of C2 and F - Id has multiplicity k at the origin. This work has been inspired by two papers:...