Page 1

Displaying 1 – 4 of 4

Showing per page

A class of stationary stochastic processes

Victor D. Didenko, Natalia A. Rozhenko (2014)

Studia Mathematica

Regular stationary stochastic vector processes whose spectral densities are the boundary values of matrix functions with bounded Nevanlinna characteristic are considered. A criterion for the representability of such processes as output data of linear time invariant dynamical systems is established.

A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach

Sébastien Breteaux (2014)

Annales de l’institut Fourier

In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.

Attractors for stochastic reaction-diffusion equation with additive homogeneous noise

Jakub Slavík (2021)

Czechoslovak Mathematical Journal

We study the asymptotic behaviour of solutions of a reaction-diffusion equation in the whole space d driven by a spatially homogeneous Wiener process with finite spectral measure. The existence of a random attractor is established for initial data in suitable weighted L 2 -space in any dimension, which complements the result from P. W. Bates, K. Lu, and B. Wang (2013). Asymptotic compactness is obtained using elements of the method of short trajectories.

Currently displaying 1 – 4 of 4

Page 1