On an Algebra Endomorphism Induced by a Space Map
In this work we apply the method of a unique partition of a complex function of complex variables into symmetrical functions to solving a certain type of functional equations.
Let G be a locally compact group. Let σ be a continuous involution of G and let μ be a complex bounded measure. In this paper we study the generalized d'Alembert functional equationD(μ) ∫G f(xty)dμ(t) + ∫G f(xtσ(y))dμ(t) = 2f(x)f(y) x, y ∈ G;where f: G → C to be determined is a measurable and essentially bounded function.
In this paper, we study the superstablity problem of the cosine and sine type functional equations: f(xσ(y)a)+f(xya)=2f(x)f(y) and f(xσ(y)a)−f(xya)=2f(x)f(y), where f : S → ℂ is a complex valued function; S is a semigroup; σ is an involution of S and a is a fixed element in the center of S.
The purpose of this paper is to solve two functional equations for generalized Joukowski transformations and to give a geometric interpretation to one of them. Here the Joukowski transformation means the function of a complex variable z.
Let be a transcendental meromorphic function. We propose a number of results concerning zeros and fixed points of the difference and the divided difference .
On sait (Cobham) qu’une suite - et -automatique est une suite rationnelle. Une question de Loxton et van der Poorten étend ce résultat au cas - et -régulier. On montre dans cet article que, si une suite vérifie une récurrence - et -mahlérienne d’ordre un, elle est rationnelle.