Displaying 41 – 60 of 81

Showing per page

On generalized d'Alembert functional equation.

Mohamed Akkouchi, Allal Bakali, Belaid Bouikhalene, El Houcien El Qorachi (2006)

Extracta Mathematicae

Let G be a locally compact group. Let σ be a continuous involution of G and let μ be a complex bounded measure. In this paper we study the generalized d'Alembert functional equationD(μ)    ∫G f(xty)dμ(t) + ∫G f(xtσ(y))dμ(t) = 2f(x)f(y) x, y ∈ G;where f: G → C to be determined is a measurable and essentially bounded function.

On the superstability of the cosine and sine type functional equations

Fouad Lehlou, Mohammed Moussa, Ahmed Roukbi, Samir Kabbaj (2016)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

In this paper, we study the superstablity problem of the cosine and sine type functional equations: f(xσ(y)a)+f(xya)=2f(x)f(y) f ( x σ ( y ) a ) + f ( x y a ) = 2 f ( x ) f ( y ) and f(xσ(y)a)−f(xya)=2f(x)f(y), f ( x σ ( y ) a ) - f ( x y a ) = 2 f ( x ) f ( y ) , where f : S → ℂ is a complex valued function; S is a semigroup; σ is an involution of S and a is a fixed element in the center of S.

On two new functional equations for generalized Joukowski transformations

M. Baran, H. Haruki (1991)

Annales Polonici Mathematici

The purpose of this paper is to solve two functional equations for generalized Joukowski transformations and to give a geometric interpretation to one of them. Here the Joukowski transformation means the function 1 / 2 ( z + z - 1 ) of a complex variable z.

Properties of differences of meromorphic functions

Zong-Xuan Chen, Kwang Ho Shon (2011)

Czechoslovak Mathematical Journal

Let f be a transcendental meromorphic function. We propose a number of results concerning zeros and fixed points of the difference g ( z ) = f ( z + c ) - f ( z ) and the divided difference g ( z ) / f ( z ) .

Récurrences 2 - et 3 -mahlériennes

Bernard Randé (1993)

Journal de théorie des nombres de Bordeaux

On sait (Cobham) qu’une suite 2 - et 3 -automatique est une suite rationnelle. Une question de Loxton et van der Poorten étend ce résultat au cas 2 - et 3 -régulier. On montre dans cet article que, si une suite vérifie une récurrence 2 - et 3 -mahlérienne d’ordre un, elle est rationnelle.

Currently displaying 41 – 60 of 81