Solution of nonlinear functional equations in linear normed spaces
Let be a group and an abelian group. Let be the set of solutions of the Jensen functional equation satisfying the condition for all . Let be the set of solutions of the quadratic equation satisfying the Kannappan condition for all . In this paper we determine solutions of the Whitehead equation on groups. We show that every solution of the Whitehead equation is of the form , where and . Moreover, if has the additional property that implies for all , then every...
Soit un entier naturel non nul, et une fonction entière de variables complexes. Dans un article précédent, nous avons démontré dans le cas , que si est une solution d’un système de équations aux différences à coefficients polynomiaux dans deux directions différentes, avec une condition restrictive portant sur les équations, alors est le quotient d’un polynôme exponentiel par un polynôme. Dans cet article, nous démontrons ce résultat dans le cas général, et l’analogue pour le cas de...
En réponse à une question de D.W. Masser, nous démontrons que, pour presque tout système d’équations aux différencesoù les et les sont des polynômes non tous nuls et sont -linéairement indépendants, toute solution qui est une fonction entière est le quotient d’un polynôme exponentiel par un polynôme. Nous avons un résultat semblable quand la deuxième équation est remplacée par une équation différentielle .
This work deals with Feigenbaum’s functional equation ⎧ , ⎨ ⎩ g(0) = 1, -1 ≤ g(x) ≤ 1, x∈[-1,1] where p ≥ 2 is an integer, is the p-fold iteration of g, and h is a strictly monotone odd continuous function on [-1,1] with h(0) = 0 and |h(x)| < |x| (x ∈ [-1,1], x ≠ 0). Using a constructive method, we discuss the existence of continuous unimodal even solutions of the above equation.
We obtain a result on the existence of a solution with big graph of functional equations of the form g(x,𝜑(x),𝜑(f(x)))=0 and we show that it is applicable to some important equations, both linear and nonlinear, including those of Abel, Böttcher and Schröder. The graph of such a solution 𝜑 has some strange properties: it is dense and connected, has full outer measure and is topologically big.