Displaying 1441 – 1460 of 3651

Showing per page

Littlewood-Paley characterization of Hölder-Zygmund spaces on stratified Lie groups

Guorong Hu (2019)

Czechoslovak Mathematical Journal

We give a characterization of the Hölder-Zygmund spaces 𝒞 σ ( G ) ( 0 < σ < ) on a stratified Lie group G in terms of Littlewood-Paley type decompositions, in analogy to the well-known characterization of the Euclidean case. Such decompositions are defined via the spectral measure of a sub-Laplacian on G , in place of the Fourier transform in the classical setting. Our approach mainly relies on almost orthogonality estimates and can be used to study other function spaces such as Besov and Triebel-Lizorkin spaces...

Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets

Peter Sjögren, Per Sjölin (1981)

Annales de l'institut Fourier

Let E R be a closed null set. We prove an equivalence between the Littlewood-Paley decomposition in L p with respect to the complementary intervals of E and Fourier multipliers of Hörmander-Mihlin and Marcinkiewicz type with singularities on E . Similar properties are studied in R 2 for a union of rays from the origin. Then there are connections with the maximal function operator with respect to all rectangles parallel to these rays. In particular, this maximal operator is proved to be bounded on L p , 1 &lt; p &lt; ,...

Littlewood-Paley decompositions on manifolds with ends

Jean-Marc Bouclet (2010)

Bulletin de la Société Mathématique de France

For certain non compact Riemannian manifolds with ends which may or may not satisfy the doubling condition on the volume of geodesic balls, we obtain Littlewood-Paley type estimates on (weighted) L p spaces, using the usual square function defined by a dyadic partition.

Littlewood-Paley g-functions with rough kernels on homogeneous groups

Yong Ding, Xinfeng Wu (2009)

Studia Mathematica

Let 𝔾 be a homogeneousgroup on ℝⁿ whose multiplication and inverse operations are polynomial maps. In 1999, T. Tao proved that the singular integral operator with Llog⁺L function kernel on ≫ is both of type (p,p) and of weak type (1,1). In this paper, the same results are proved for the Littlewood-Paley g-functions on 𝔾

Littlewood-Paley-Stein functions on complete Riemannian manifolds for 1 ≤ p ≤ 2

Thierry Coulhon, Xuan Thinh Duong, Xiang Dong Li (2003)

Studia Mathematica

We study the weak type (1,1) and the L p -boundedness, 1 < p ≤ 2, of the so-called vertical (i.e. involving space derivatives) Littlewood-Paley-Stein functions and ℋ respectively associated with the Poisson semigroup and the heat semigroup on a complete Riemannian manifold M. Without any assumption on M, we observe that and ℋ are bounded in L p , 1 < p ≤ 2. We also consider modified Littlewood-Paley-Stein functions that take into account the positivity of the bottom of the spectrum. Assuming that...

Local integrability of strong and iterated maximal functions

Paul Alton Hagelstein (2001)

Studia Mathematica

Let M S denote the strong maximal operator. Let M x and M y denote the one-dimensional Hardy-Littlewood maximal operators in the horizontal and vertical directions in ℝ². A function h supported on the unit square Q = [0,1]×[0,1] is exhibited such that Q M y M x h < but Q M x M y h = . It is shown that if f is a function supported on Q such that Q M y M x f < but Q M x M y f = , then there exists a set A of finite measure in ℝ² such that A M S f = .

Local means and wavelets in function spaces

Hans Triebel (2008)

Banach Center Publications

The paper deals with local means and wavelet bases in weighted and unweighted function spaces of type B p q s and F p q s on ℝⁿ and on ⁿ.

Local Toeplitz operators based on wavelets: phase space patterns for rough wavelets

Krzysztof Nowak (1996)

Studia Mathematica

We consider two standard group representations: one acting on functions by translations and dilations, the other by translations and modulations, and we study local Toeplitz operators based on them. Local Toeplitz operators are the averages of projection-valued functions g P g , ϕ , where for a fixed function ϕ, P g , ϕ denotes the one-dimensional orthogonal projection on the function U g ϕ , U is a group representation and g is an element of the group. They are defined as integrals ʃ W P g , ϕ d g , where W is an open, relatively...

Currently displaying 1441 – 1460 of 3651