Page 1

Displaying 1 – 10 of 10

Showing per page

Idempotents in quotients and restrictions of Banach algebras of functions

Thomas Vils Pedersen (1996)

Annales de l'institut Fourier

Let 𝒜 β be the Beurling algebra with weight ( 1 + | n | ) β on the unit circle 𝕋 and, for a closed set E 𝕋 , let J 𝒜 β ( E ) = { f 𝒜 β : f = 0 on a neighbourhood of E } . We prove that, for β > 1 2 , there exists a closed set E 𝕋 of measure zero such that the quotient algebra 𝒜 β / J 𝒜 β ( E ) is not generated by its idempotents, thus contrasting a result of Zouakia. Furthermore, for the Lipschitz algebras λ γ and the algebra 𝒜 𝒞 of absolutely continuous functions on 𝕋 , we characterize the closed sets E 𝕋 for which the restriction algebras λ γ ( E ) and 𝒜 𝒞 ( E ) are generated by their idempotents.

Identification of basic thermal technical characteristics of building materials

Stanislav Šťastník, Jiří Vala, Hana Kmínová (2007)

Kybernetika

Modelling of building heat transfer needs two basic material characteristics: heat conduction factor and thermal capacity. Under some simplifications these two factors can be determined from a rather simple equipment, generating heat from one of two aluminium plates into the material sample and recording temperature on the contacts between the sample and the plates. However, the numerical evaluation of both characteristics leads to a non-trivial optimization problem. This article suggests an efficient...

Indefinite integration of oscillatory functions

Paweł Keller (1998)

Applicationes Mathematicae

A simple and fast algorithm is presented for evaluating the indefinite integral of an oscillatory function x y i f ( t ) e i ω t d t , -1 ≤ x < y ≤ 1, ω ≠ 0, where the Chebyshev series expansion of the function f is known. The final solution, expressed as a finite Chebyshev series, is obtained by solving a second-order linear difference equation. Because of the nature of the equation special algorithms have to be used to find a satisfactory approximation to the integral.

Integrability theorems for trigonometric series

Bruce Aubertin, John Fournier (1993)

Studia Mathematica

We show that, if the coefficients (an) in a series a 0 / 2 + n = 1 a n c o s ( n t ) tend to 0 as n → ∞ and satisfy the regularity condition that m = 0 j = 1 [ n = j 2 m ( j + 1 ) 2 m - 1 | a n - a n + 1 | ] ² 1 / 2 < , then the cosine series represents an integrable function on the interval [-π,π]. We also show that, if the coefficients (bn) in a series n = 1 b n s i n ( n t ) tend to 0 and satisfy the corresponding regularity condition, then the sine series represents an integrable function on [-π,π] if and only if n = 1 | b n | / n < . These conclusions were previously known to hold under stronger restrictions on the sizes of the differences...

Inverse Fourier transform

Leonede De Michele, Marina Di Natale, Delfina Roux (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper a very general method is given in order to reconstruct a periodic function f knowing only an approximation of its Fourier coefficients.

IP-Dirichlet measures and IP-rigid dynamical systems: an approach via generalized Riesz products

Sophie Grivaux (2013)

Studia Mathematica

If ( n k ) k 1 is a strictly increasing sequence of integers, a continuous probability measure σ on the unit circle is said to be IP-Dirichlet with respect to ( n k ) k 1 if σ ̂ ( k F n k ) 1 as F runs over all non-empty finite subsets F of ℕ and the minimum of F tends to infinity. IP-Dirichlet measures and their connections with IP-rigid dynamical systems have recently been investigated by Aaronson, Hosseini and Lemańczyk. We simplify and generalize some of their results, using an approach involving generalized Riesz products.

Currently displaying 1 – 10 of 10

Page 1