Gaussian kernels have only Gaussian maximizers.
In this paper we continue the study of the Fourier transform on , , analyzing the “almost-orthogonality” of the different directions of the space with respect to the Fourier transform. We prove two theorems: the first is related to an angular Littlewood-Paley square function, and we obtain estimates in terms of powers of , where is the number of equal angles considered in . The second is an extension of the Hardy-Littlewood maximal function when one consider cylinders of , , of fixed eccentricity...