Displaying 61 – 80 of 164

Showing per page

Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms.

Aline Bonami, Demange, Bruno, Jaming, Philippe (2003)

Revista Matemática Iberoamericana

We extend an uncertainty principle due to Beurling into a characterization of Hermite functions. More precisely, all functions f on Rd which may be written as P(x)exp(-(Ax,x)), with A a real symmetric definite positive matrix, are characterized by integrability conditions on the product f(x)f(y). We then obtain similar results for the windowed Fourier transform (also known, up to elementary changes of functions, as the radar ambiguity function or the Wigner transform). We complete the paper with...

Hyperbolic singular integral operators.

Andrea R. Nahmod (1995)

Revista Matemática Iberoamericana

We define a class of integral operators which are singular relative to the hyperbolic metric in simply connected domains of the plane. We study the necessary and sufficient conditions for such operators to be bounded on L2 of the upper half plane relative to the hyperbolic metric.

Images of Gaussian random fields: Salem sets and interior points

Narn-Rueih Shieh, Yimin Xiao (2006)

Studia Mathematica

Let X = X ( t ) , t N be a Gaussian random field in d with stationary increments. For any Borel set E N , we provide sufficient conditions for the image X(E) to be a Salem set or to have interior points by studying the asymptotic properties of the Fourier transform of the occupation measure of X and the continuity of the local times of X on E, respectively. Our results extend and improve the previous theorems of Pitt [24] and Kahane [12,13] for fractional Brownian motion.

Intégrales trigonométriques et pseudofonctions

Francisco Javier González Vieli (1994)

Annales de l'institut Fourier

On étudie un analogue à plusieurs variables réelles de la théorie de Riemann des séries trigonométriques vue sous l’angle des pseudofonctions, en utilisant le laplacien intégral et la fonction de Riemann qui découle de ce choix.

Interpolation problems in cones. Nota I

Carlos A. Berenstein, Daniele Struppa (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa nota, si studiano problemi di interpolazione per varietà discrete in spazi di funzioni olomorfe in coni. In particolare si mostra come sia possibile estendere il Principio Fondamentale di Ehrenpreis ad equazioni di convoluzione nella spazio H c ( Ω ) , introdotto in [4] in connessione con problemi di fisica quantistica.

Interpolation problems in cones. Nota II

Carlos A. Berenstein, Daniele Struppa (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si estendono qui i risultati della nota precedente al caso di varietà non discrete. Ciò viene utilizzato per ottenere un teorema di rappresentazione per soluzioni di sistemi di equazioni di convoluzione in spazi di funzioni olomorfe in coni.

L p -improving properties of certain singular measures on the Heisenberg group

Pablo Rocha (2022)

Mathematica Bohemica

Let μ A be the singular measure on the Heisenberg group n supported on the graph of the quadratic function ϕ ( y ) = y t A y , where A is a 2 n × 2 n real symmetric matrix. If det ( 2 A ± J ) 0 , we prove that the operator of convolution by μ A on the right is bounded from L ( 2 n + 2 ) ( 2 n + 1 ) ( n ) to L 2 n + 2 ( n ) . We also study the type set of the measures d ν γ ( y , s ) = η ( y ) | y | - γ d μ A ( y , s ) , for 0 γ < 2 n , where η is a cut-off function around the origin on 2 n . Moreover, for γ = 0 we characterize the type set of ν 0 .

Moyennes sphériques et opérateur de Helmholtz itéré

Francisco Vieli (1995)

Colloquium Mathematicae

Il est bien connu qu’une fonction f sur n est harmonique - Δf = 0 - si et seulement si sa moyenne sur toute sphère est égale à sa valeur au centre de cette sphère. De manière semblable, f vérifie l’équation de Helmholtz Δf + cf = 0 si et seulement si sa moyenne sur la sphère de centre x et de rayon r vaut Γ ( n / 2 ) ( r c / 2 ) ( 2 - n ) / 2 J ( n - 2 ) / 2 ( r c ) · f ( x ) . Dans ce travail, nous généralisons ces résultats à l’opérateur ( Δ + c ) k où k est un entier strictement positif et c une constante non nulle. Bien qu’une méthode pour y parvenir soit esquissée dans...

Currently displaying 61 – 80 of 164