On the Legendre and Laplace transformations
For a smooth curve and a set in the plane , let be the space of finite Borel measures in the plane supported on , absolutely continuous with respect to the arc length and whose Fourier transform vanishes on . Following [12], we say that is a Heisenberg uniqueness pair if . In the context of a hyperbola , the study of Heisenberg uniqueness pairs is the same as looking for uniqueness sets of a collection of solutions to the Klein-Gordon equation. In this work, we mainly address the...
On décrit un problème naturel concernant la transformation de Fourier. Soient , deux fonctions associées par celle-ci, positives pour et nulles en zéro. Quelle est la borne inférieure pour ? En dimension supérieure, même question, l’intervalle étant remplacé par la boule de rayon . On montre l’existence d’une borne inférieure strictement positive, qui est estimée en fonction de la dimension. La dernière section montre que cette question est naturellement liée à la théorie des fonctions zêta....
Let φ:ℝ² → ℝ be a homogeneous polynomial function of degree m ≥ 2, let Σ = (x,φ(x)): |x| ≤ 1 and let σ be the Borel measure on Σ defined by where B is the unit open ball in ℝ² and dx denotes the Lebesgue measure on ℝ². We show that the composition of the Fourier transform in ℝ³ followed by restriction to Σ defines a bounded operator from to for certain p,q. For m ≥ 6 the results are sharp except for some border points.
Let a certain curve in We investigate inequalities of the type for 3). Our results improve improve an earlier restriction theorem of Prestini. Various generalizations are also discussed.