Weighted boundedness of multilinear Littlewood-Paley operators for the extreme cases of .
Some weighted sharp maximal function inequalities for the Toeplitz type operator are established, where are a fixed singular integral operator with non-smooth kernel or ±I (the identity operator), are linear operators defined on the space of locally integrable functions, k = 1,..., m, and . The weighted boundedness of on Morrey spaces is obtained by using sharp maximal function inequalities.
For 1 < p < ∞ and for weight w in , we show that the r-variation of the Fourier sums of any function f in is finite a.e. for r larger than a finite constant depending on w and p. The fact that the variation exponent depends on w is necessary. This strengthens previous work of Hunt-Young and is a weighted extension of a variational Carleson theorem of Oberlin-Seeger-Tao-Thiele-Wright. The proof uses weighted adaptation of phase plane analysis and a weighted extension of a variational inequality...
Given , , and , we give sufficient conditions on weights for the commutator of the fractional integral operator, , to satisfy weighted endpoint inequalities on and on bounded domains. These results extend our earlier work [3], where we considered unweighted inequalities on .
Let be a positive integer, , . We give sufficient conditions on weights for the commutators of multilinear fractional integral operators to satisfy a weighted endpoint inequality which extends the result in D. Cruz-Uribe, A. Fiorenza: Weighted endpoint estimates for commutators of fractional integrals, Czech. Math. J. 57 (2007), 153–160. We also give a weighted strong type inequality which improves the result in X. Chen, Q. Xue: Weighted estimates for a class of multilinear fractional type...
We study boundedness properties of commutators of general linear operators with real-valued BMO functions on weighted spaces. We then derive applications to particular important operators, such as Calderón-Zygmund type operators, pseudo-differential operators, multipliers, rough singular integrals and maximal type operators.
The following iterated commutators of the maximal operator for multilinear singular integral operators and of the multilinear fractional integral operator are introduced and studied: , , where are the smooth truncations of the multilinear singular integral operators and is the multilinear fractional integral operator, for i = 1,…,m and f⃗ = (f1,…,fm). Weighted strong and L(logL) type end-point estimates for the above iterated commutators associated with two classes of multiple weights,...
An improved multiple Cotlar inequality is obtained. From this result, weighted norm inequalities for the maximal operator of a multilinear singular integral including weak and strong estimates are deduced under the multiple weights constructed recently.
Recently, F. Nazarov, S. Treil and A. Volberg (and independently X. Tolsa) have extended the classical theory of Calderón-Zygmund operators to the context of a non-homogeneous space (X,d,μ) where, in particular, the measure μ may be non-doubling. In the present work we study weighted inequalities for these operators. Specifically, for 1 < p < ∞, we identify sufficient conditions for the weight on one side, which guarantee the existence of another weight in the other side, so that the...
In this paper we study integral operators of the form
Weighted inequalities for some square functions are studied. L² results are proved first using the particular structure of the operator and then extrapolation of weights is applied to extend the results to other spaces. In particular, previous results for square functions with rough kernel are obtained in a simpler way and extended to a larger class of weights.
In this paper we study integral operators with kernels