Displaying 181 – 200 of 1635

Showing per page

Atomic decomposition on Hardy-Sobolev spaces

Yong-Kum Cho, Joonil Kim (2006)

Studia Mathematica

As a natural extension of L p Sobolev spaces, we consider Hardy-Sobolev spaces and establish an atomic decomposition theorem, analogous to the atomic decomposition characterization of Hardy spaces. As an application, we deduce several embedding results for Hardy-Sobolev spaces.

B V spaces and rectifiability for Carnot-Carathéodory metrics: an introduction

Franchi, Bruno (2003)

Nonlinear Analysis, Function Spaces and Applications

This paper is meant as a (short and partial) introduction to the study of the geometry of Carnot groups and, more generally, of Carnot-Carathéodory spaces associated with a family of Lipschitz continuous vector fields. My personal interest in this field goes back to a series of joint papers with E. Lanconelli, where this notion was exploited for the study of pointwise regularity of weak solutions to degenerate elliptic partial differential equations. As stated in the title, here we are mainly concerned...

Banach algebra of the Fourier multipliers on weighted Banach function spaces

Alexei Karlovich (2015)

Concrete Operators

Let MX,w(ℝ) denote the algebra of the Fourier multipliers on a separable weighted Banach function space X(ℝ,w).We prove that if the Cauchy singular integral operator S is bounded on X(ℝ, w), thenMX,w(ℝ) is continuously embedded into L∞(ℝ). An important consequence of the continuous embedding MX,w(ℝ) ⊂ L∞(ℝ) is that MX,w(ℝ) is a Banach algebra.

Bases d'ondelettes sur les courbes corde-arc, noyau de Cauchy et spaces de Hardy associés.

Pascal Auscher, Philippe Tchamitchian (1989)

Revista Matemática Iberoamericana

Se construyen dos bases incondicionales de L2(R) adaptadas al estudio de la integral de Cauchy sobre una curva cuerda-arco, y se extiende la construcción a L2(Rd). Esto permite obtener una prueba simple del "Teorema T(b)" de G. David, J.L. Journé u S. Semmes. Se define un espacio de Hardy ponderado Hb1(Rd) caracterizado por las bases anteriores. Finalmente se aplican estos métodos al estudio del potencial de doble capa sobre una superficie lipschitziana.

Basic relations valid for the Bernstein spaces B ² σ and their extensions to larger function spaces via a unified distance concept

P. L. Butzer, R. L. Stens, G. Schmeisser (2014)

Banach Center Publications

Some basic theorems and formulae (equations and inequalities) of several areas of mathematics that hold in Bernstein spaces B σ p are no longer valid in larger spaces. However, when a function f is in some sense close to a Bernstein space, then the corresponding relation holds with a remainder or error term. This paper presents a new, unified approach to these errors in terms of the distance of f from B σ p . The difficult situation of derivative-free error estimates is also covered.

Currently displaying 181 – 200 of 1635