Characterization of the Besov-Lipschitz and Triebel-Lizorkin Spaces the Case q < 1.
We study the mapping property of the commutator of Hardy-Littlewood maximal function on Triebel-Lizorkin spaces. Also, some new characterizations of the Lipschitz spaces are given.
We characterize those anisotropic Sobolev spaces on tori in the and uniform norms for which the idempotent multipliers have a description in terms of the coset ring of the dual group. These results are deduced from more general theorems concerning invariant projections on vector-valued function spaces on tori. This paper is a continuation of the author’s earlier paper [W].
In his recent lecture at the International Congress [S], Stephen Semmes stated the following conjecture for which we provide a proof.Theorem. Suppose Ω is a bounded open set in Rn with n > 2, and suppose that B(0,1) ⊂ Ω, Hn-1(∂Ω) = M < ∞ (depending on n and M) and a Lipschitz graph Γ (with constant L) such that Hn-1(Γ ∩ ∂Ω) ≥ ε.Here Hk denotes k-dimensional Hausdorff measure and B(0,1) the unit ball in Rn. By iterating our proof we obtain a slightly stronger result which allows us...
Abstract. We study a Neumann problem for the heat equation in a cylindrical domain with -base and data in , a subspace of 1. We derive our results, considering the action of an adjoint operator on , a predual of , and using known properties of this last space.
In the Fourier theory of functions of one variable, it is common to extend a function and its Fourier transform holomorphically to domains in the complex plane C, and to use the power of complex function theory. This depends on first extending the exponential function eixξ of the real variables x and ξ to a function eizζ which depends holomorphically on both the complex variables z and ζ .Our thesis is this. The natural analog in higher dimensions is to extend a function of m real variables monogenically...
Cotangent type functions in Rn are used to construct Cauchy kernels and Green kernels on the conformally flat manifolds Rn/Zk where 1 < = k ≤ M. Basic properties of these kernels are discussed including introducing a Cauchy formula, Green's formula, Cauchy transform, Poisson kernel, Szegö kernel and Bergman kernel for certain types of domains. Singular Cauchy integrals are also introduced as are associated Plemelj projection operators. These in turn are used to study Hardy spaces in this...
We consider central versions of the space studied by Coifman and Rochberg and later by Bennett, as well as some natural relations with a central version of a maximal operator.
Let be a metric space with a doubling measure, be a boundedly compact metric space and be a Lebesgue precise mapping whose upper gradient belongs to the Lorentz space , . Let be a set of measure zero. Then for -a.e. , where is the -dimensional Hausdorff measure and is the -codimensional Hausdorff measure. This property is closely related to the coarea formula and implies a version of the Eilenberg inequality. The result relies on estimates of Hausdorff content of level sets...
The spaces of entire functions represented by Dirichlet series have been studied by Hussein and Kamthan and others. In the present paper we consider the space of all entire functions defined by vector-valued Dirichlet series and study the properties of a sequence space which is defined using the type of an entire function represented by vector-valued Dirichlet series. The main result concerns with obtaining the nature of the dual space of this sequence space and coefficient multipliers for some...
2000 Mathematics Subject Classification: 44A35; 42A75; 47A16, 47L10, 47L80The Dunkl operators.* Supported by the Tunisian Research Foundation under 04/UR/15-02.
Let for be a homogeneous function of degree zero and a BMO function. The commutator generated by the Marcinkiewicz integral and is defined by In this paper, the author proves the -boundedness of the Marcinkiewicz integral operator and its commutator when satisfies some conditions. Moreover, the author obtains the corresponding result about and on Herz spaces with variable exponent.
A classical theorem of Coifman, Rochberg, and Weiss on commutators of singular integrals is extended to the case of generalized Lp spaces with variable exponent.
In this work we prove some sharp weighted inequalities on spaces of homogeneous type for the higher order commutators of singular integrals introduced by R. Coifman, R. Rochberg and G. Weiss in Factorization theorems for Hardy spaces in several variables, Ann. Math. 103 (1976), 611–635. As a corollary, we obtain that these operators are bounded on when belongs to the Muckenhoupt’s class , . In addition, as an important tool in order to get our main result, we prove a weighted Fefferman-Stein...
In this paper, the boundedness of a large class of sublinear commutator operators generated by a Calderón-Zygmund type operator on a generalized weighted Morrey spaces with the weight function belonging to Muckenhoupt’s class is studied. When and , sufficient conditions on the pair which ensure the boundedness of the operator from to are found. In all cases the conditions for the boundedness of are given in terms of Zygmund-type integral inequalities on , which do not require...
Let be the fractional maximal function. The commutator generated by and a suitable function is defined by . Denote by the set of all measurable functions such that and by the set of all such that the Hardy-Littlewood maximal function is bounded on . In this paper, the authors give some characterizations of for which is bounded from into , when , and with .