On approximate differentiability of functions with bounded deformation.
On the real line, let the Fourier transform of kn be k'n(ξ) = k'(ξ-n) where k'(ξ) is a smooth compactly supported function. Consider the bilinear operators Sn(f, g)(x) = ∫ f(x+y)g(x-y)kn(y) dy. If 2 ≤ p, q ≤ ∞, with 1/p + 1/q = 1/2, I prove thatΣ∞n=-∞ ||Sn(f,g)||22 ≤ C2||f||p2||g||q2.The constant C depends only upon k.
We introduce a new “weak” BMO-regularity condition for couples (X,Y) of lattices of measurable functions on the circle (Definition 3, Section 9), describe it in terms of the lattice , and prove that this condition still ensures “good” interpolation for the couple of the Hardy-type spaces corresponding to X and Y (Theorem 1, Section 9). Also, we present a neat version of Pisier’s approach to interpolation of Hardy-type subspaces (Theorem 2, Section 13). These two main results of the paper are...
It is known that the weak type (1,1) for the Hardy-Littlewood maximal operator can be obtained from the weak type (1,1) over Dirac deltas. This theorem is due to M. de Guzmán. In this paper, we develop a technique that allows us to prove such a theorem for operators and measure spaces in which Guzmán's technique cannot be used.
We formulate a version of the T1 theorem which enables us to treat singular integrals whose kernels need not satisfy the usual smoothness conditions. We also prove a weighted version. As an application of the general theory, we consider a class of multilinear singular integrals in related to the first Calderón commutator, but with a kernel which is far less regular.
In this paper we give a sufficient condition on the pair of weights for the boundedness of the Weyl fractional integral from into . Under some restrictions on and , this condition is also necessary. Besides, it allows us to show that for any there exist non-trivial weights such that is bounded from into itself, even in the case .
In this paper we study distribution and continuity properties of functions satisfying a vanishing mean oscillation property with a lag mapping on a space of homogeneous type.
Let P(z,β) be the Poisson kernel in the unit disk , and let be the λ -Poisson integral of f, where . We let be the normalization . If λ >0, we know that the best (regular) regions where converges to f for a.a. points on ∂ are of nontangential type. If λ =0 the situation is different. In a previous paper, we proved a result concerning the convergence of toward f in an weakly tangential region, if and p > 1. In the present paper we will extend the result to symmetric spaces X of...
Let be the left convolution operators on with support included in F and denote those which are norm limits of convolution by bounded measures in M(F). Conditions on F are given which insure that , and are as big as they can be, namely have as a quotient, where the ergodic space W contains, and at times is very big relative to . Other subspaces of are considered. These improve results of Cowling and Fournier, Price and Edwards, Lust-Piquard, and others.
Differentiation of integrals of functions from the class with respect to the basis of convex sets is established. An estimate of the rate of differentiation is given. It is also shown that there exist functions in , N ≥ 3, and with ω(δ)/δ → ∞ as δ → +0 whose integrals are not differentiated with respect to the bases of convex sets in the corresponding dimension.