Displaying 1181 – 1200 of 1635

Showing per page

Singular integrals with highly oscillating kernels on product spaces

Elena Prestini (2000)

Colloquium Mathematicae

We prove the L 2 ( 2 ) boundedness of the oscillatory singular integrals P 0 f ( x , y ) = D x e i ( M 2 ( x ) y ' + M 1 ( x ) x ' ) ο v e r x ' y ' f ( x - x ' , y - y ' ) d x ' d y ' for arbitrary real-valued L functions M 1 ( x ) , M 2 ( x ) and for rather general domains D x 2 whose dependence upon x satisfies no regularity assumptions.

Singular integrals with holomorphic kernels and Fourier multipliers on star-shaped closed Lipschitz curves

Tao Qian (1997)

Studia Mathematica

The paper presents a theory of Fourier transforms of bounded holomorphic functions defined in sectors. The theory is then used to study singular integral operators on star-shaped Lipschitz curves, which extends the result of Coifman-McIntosh-Meyer on the L 2 -boundedness of the Cauchy integral operator on Lipschitz curves. The operator theory has a counterpart in Fourier multiplier theory, as well as a counterpart in functional calculus of the differential operator 1/i d/dz on the curves.

Singularities in Muckenhoupt weighted function spaces

Dorothee D. Haroske (2008)

Banach Center Publications

We study weighted function spaces of Lebesgue, Besov and Triebel-Lizorkin type where the weight function belongs to some Muckenhoupt p class. The singularities of functions in these spaces are characterised by means of envelope functions.

Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces

Yoshihiro Mizuta, Tetsu Shimomura (2023)

Czechoslovak Mathematical Journal

Our aim is to establish Sobolev type inequalities for fractional maximal functions M , ν f and Riesz potentials I , α f in weighted Morrey spaces of variable exponent on the half space . We also obtain Sobolev type inequalities for a C 1 function on . As an application, we obtain Sobolev type inequality for double phase functionals with variable exponents Φ ( x , t ) = t p ( x ) + ( b ( x ) t ) q ( x ) , where p ( · ) and q ( · ) satisfy log-Hölder conditions, p ( x ) < q ( x ) for x , and b ( · ) is nonnegative and Hölder continuous of order θ ( 0 , 1 ] .

Currently displaying 1181 – 1200 of 1635