The Poisson Kernel for Heisenberg Polynomials on the Disk.
The main aim of this paper is to prove that the maximal operator is bounded from the Hardy space to weak- and is not bounded from to .
In this paper, we give a criterion for unconditional convergence with respect to some summability methods, dealing with the topological size of the set of choices of sign providing convergence. We obtain similar results for boundedness. In particular, quasi-sure unconditional convergence implies unconditional convergence.
The transplantation operators for the Hankel transform are considered. We prove that the transplantation operator maps an integrable function under certain conditions to an integrable function. As an application, we obtain the L¹-boundedness and H¹-boundedness of Cesàro operators for the Hankel transform.
This paper develops some Littlewood-Paley theory for Hermite expansions. The main result is that certain analogues of Triebel-Lizorkin spaces are well-defined in the context of Hermite expansions.
Let s* denote the maximal function associated with the rectangular partial sums of a given double function series with coefficients . The following generalized Hardy-Littlewood inequality is investigated: , where ξ̅=max(ξ,1), 0 < p < ∞, and μ is a suitable positive Borel measure. We give sufficient conditions on and μ under which the above Hardy-Littlewood inequality holds. Several variants of this inequality are also examined. As a consequence, the ||·||p,μ-convergence property of ...
By a general Franklin system corresponding to a dense sequence = (tₙ, n ≥ 0) of points in [0,1] we mean a sequence of orthonormal piecewise linear functions with knots , that is, the nth function of the system has knots t₀, ..., tₙ. The main result of this paper is that each general Franklin system is an unconditional basis in , 1 < p < ∞.
We give a simple geometric characterization of knot sequences for which the corresponding orthonormal spline system of arbitrary order k is an unconditional basis in the atomic Hardy space H¹[0,1].
We prove that given any natural number k and any dense point sequence (tₙ), the corresponding orthonormal spline system is an unconditional basis in reflexive .
Exact conditions for α, β, a, b > −1 and 1 ≤ p ≤ ∞ are determined under which the inclusion property ⊂ is valid. It is shown that the conditions characterize the inclusion property. The paper concludes with some results, in which the inclusion property can be detected in relation with estimates of Jacobi differential operators and with Muckenhoupt’s transplantation theorems and multiplier theorems for Jacobi series.
We establish conditions on the partial moduli of continuity which guarantee uniform convergence of the N-dimensional Walsh-Fourier series of functions f from the class , where p(n)↑ ∞ as n → ∞.