Frame characterizations of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type and their applications.
We construct wavelet-type frames associated with the expansive matrix dilation on the Anisotropic Triebel-Lizorkin spaces. We also show the a.e. convergence of the frame expansion which includes multi-wavelet expansion as a special case.
We consider two types of Besov spaces on the closed snowflake, defined by traces and with the help of the homeomorphic map from the interval [0,3]. We compare these spaces and characterize them in terms of Daubechies wavelets.