The Affine Frame in -adic Analysis
In this paper, we will introduce the concept of affine frame in wavelet analysis to the field of -adic number, hence provide new mathematic tools for application of -adic analysis.
In this paper, we will introduce the concept of affine frame in wavelet analysis to the field of -adic number, hence provide new mathematic tools for application of -adic analysis.
A stronger version of almost uniform convergence in von Neumann algebras is introduced. This "bundle convergence" is additive and the limit is unique. Some extensions of classical limit theorems are obtained.
In this paper, two important geometric concepts–grapical center and width, are introduced in -adic numbers field. Based on the concept of width, we give the Heisenberg uncertainty relation on harmonic analysis in -adic numbers field, that is the relationship between the width of a complex-valued function and the width of its Fourier transform on -adic numbers field.
To each set of knots for i = 0,...,2ν and for i = 2ν + 1,..., n + ν, with 1 ≤ ν ≤ n, there corresponds the space of all piecewise linear and continuous functions on I = [0,1] with knots and the orthogonal projection of L²(I) onto . The main result is . This shows that the Lebesgue constant for the Franklin orthogonal system is 2 + (2-√3)².
Let 0 < p ≤ 1 < q < ∞ and α = n(1/p - 1/q). We introduce some new Hardy spaces which are the local versions of spaces at the origin. Characterizations of these spaces in terms of atomic and molecular decompositions are established, together with their φ-transform characterizations in M. Frazier and B. Jawerth’s sense. We also prove an interpolation theorem for operators on and discuss the -boundedness of Calderón-Zygmund operators. Similar results can also be obtained for the non-homogeneous...
This paper deals with the use of wavelets in the framework of the Mortar method. We first review in an abstract framework the theory of the mortar method for non conforming domain decomposition, and point out some basic assumptions under which stability and convergence of such method can be proven. We study the application of the mortar method in the biorthogonal wavelet framework. In particular we define suitable multiplier spaces for imposing weak continuity. Unlike in the classical mortar method,...
This paper deals with the use of wavelets in the framework of the Mortar method. We first review in an abstract framework the theory of the mortar method for non conforming domain decomposition, and point out some basic assumptions under which stability and convergence of such method can be proven. We study the application of the mortar method in the biorthogonal wavelet framework. In particular we define suitable multiplier spaces for imposing weak continuity. Unlike in the classical mortar method,...