Imaginary powers of the Dunkl harmonic oscillator.
Completeness of a dilation system on the standard Lebesgue space is considered for 2-periodic functions . We show that the problem is equivalent to an open question on cyclic vectors of the Hardy space on the Hilbert multidisc . Several simple sufficient conditions are exhibited, which include however practically all previously known results (Wintner; Kozlov; Neuwirth, Ginsberg, and Newman; Hedenmalm, Lindquist, and Seip). For instance, each of the following conditions implies cyclicity...
Theorems stating sufficient conditions for the inequivalence of the d-variate Haar wavelet system and another wavelet system in the spaces and are proved. These results are used to show that the Strömberg wavelet system and the system of continuous Daubechies wavelets with minimal supports are not equivalent to the Haar system in these spaces. A theorem stating that some systems of smooth Daubechies wavelets are not equivalent to the Haar system in is also shown.
Ingham [6] ha migliorato un risultato precedente di Wiener [23] sulle serie di Fourier non armoniche. Modificando la sua funzione di peso noi otteniamo risultati ottimali, migliorando precedenti teoremi di Kahane [9], Castro e Zuazua [3], Jaffard, Tucsnak e Zuazua [7] e di Ullrich [21]. Applichiamo poi questi risultati a problemi di osservabilità simultanea.
We show that, if the coefficients (an) in a series tend to 0 as n → ∞ and satisfy the regularity condition that , then the cosine series represents an integrable function on the interval [-π,π]. We also show that, if the coefficients (bn) in a series tend to 0 and satisfy the corresponding regularity condition, then the sine series represents an integrable function on [-π,π] if and only if . These conclusions were previously known to hold under stronger restrictions on the sizes of the differences...
We give integral representations for multiple Hermite and multiple Laguerre polynomials of both type I and II. We also show how these are connected with double integral representations of certain kernels from random matrix theory.
Mathematics Subject Classification: 42A38, 42C40, 33D15, 33D60This paper aims to study the q-wavelets and the continuous q-wavelet transforms, associated with the q-Bessel operator for a fixed q ∈]0, 1[. Using the q-Riemann-Liouville and the q-Weyl transforms, we give some relations between the continuous q-wavelet transform, studied in [3], and the continuous q-wavelet transform associated with the q-Bessel operator, and we deduce formulas which give the inverse operators of the q-Riemann-Liouville and...