Page 1

Displaying 1 – 20 of 20

Showing per page

Non-Lebesgue multiresolution analyses

Lawrence Baggett (2010)

Colloquium Mathematicae

Classical notions of wavelets and multiresolution analyses deal with the Hilbert space L²(ℝ) and the standard translation and dilation operators. Key in the study of these subjects is the low-pass filter, which is a periodic function h ∈ L²([0,1)) that satisfies the classical quadrature mirror filter equation |h(x)|²+|h(x+1/2)|² = 2. This equation is satisfied almost everywhere with respect to Lebesgue measure on the torus. Generalized multiresolution analyses and wavelets exist in abstract Hilbert...

Non-MSF Wavelets for the Hardy Space H²(ℝ)

Biswaranjan Behera (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

All wavelets constructed so far for the Hardy space H²(ℝ) are MSF wavelets. We construct a family of H²-wavelets which are not MSF. An equivalence relation on H²-wavelets is introduced and it is shown that the corresponding equivalence classes are non-empty. Finally, we construct a family of H²-wavelets with Fourier transform not vanishing in any neighbourhood of the origin.

Non-separable bidimensional wavelet bases.

Albert Cohen, Ingrid Daubechies (1993)

Revista Matemática Iberoamericana

We build orthonormal and biorthogonal wavelet bases of L2(R2) with dilation matrices of determinant 2. As for the one dimensional case, our construction uses a scaling function which solves a two-scale difference equation associated to a FIR filter. Our wavelets are generated from a single compactly supported mother function. However, the regularity of these functions cannot be derived by the same approach as in the one dimensional case. We review existing techniques to evaluate the regularity of...

Non-similarity of Walsh and trigonometric systems

P. Wojtaszczyk (2000)

Studia Mathematica

We show that in L p for p ≠ 2 the constants of equivalence between finite initial segments of the Walsh and trigonometric systems have power type growth. We also show that the Riemann ideal norms connected with those systems have power type growth.

Currently displaying 1 – 20 of 20

Page 1