Radial Subspaces of Besov and Lizorkin-Triebel Classes: Extended Strauss Lemma and Compactness of Embeddings.
Let a sequence be given such that the exponential system forms a Riesz basis in and be a sequence of independent real-valued random variables. We study the properties of the system as well as related problems on estimation of entire functions with random zeroes and also problems on reconstruction of bandlimited signals with bandwidth via their samples at the random points .
The aim of these lectures is to present a survey of some results on spaces of functions with dominating mixed smoothness. These results concern joint work with Winfried Sickel and Miroslav Krbec as well as the work which has been done by Jan Vybíral within his thesis. The first goal is to discuss the Fourier-analytical approach, equivalent characterizations with the help of derivatives and differences, local means, atomic and wavelet decompositions. Secondly, on this basis we study approximation...
Using the techniques of approximation and factorization of convolution operators we study the problem of irregular sampling of band-limited functions on a locally compact Abelian group . The results of this paper relate to earlier work by Feichtinger and Gröchenig in a similar way as Kluvánek’s work published in 1969 relates to the classical Shannon Sampling Theorem. Generally speaking we claim that reconstruction is possible as long as there is sufficient high sampling density. Moreover, the iterative...
A method is given to find a recurrence relation for the coefficients of the series expansion of a function f with respect to classical orthogonal polynomials of a discrete variable, which follows from a linear difference equation satisfied by f.
We show that polynomials defined by recurrence relations with periodic coefficients may be represented with the help of Chebyshev polynomials of the second kind.
Let be any sequence of classical orthogonal polynomials. Further, let f be a function satisfying a linear differential equation with polynomial coefficients. We give an algorithm to construct, in a compact form, a recurrence relation satisfied by the coefficients in . A systematic use of the basic properties (including some nonstandard ones) of the polynomials results in obtaining a low order of the recurrence.
It has been proved recently that the two-direction refinement equation of the form can be used in wavelet theory for constructing two-direction wavelets, biorthogonal wavelets, wavelet packages, wavelet frames and others. The two-direction refinement equation generalizes the classical refinement equation , which has been used in many areas of mathematics with important applications. The following continuous extension of the classical refinement equation has also various interesting applications....
Nous reprenons la construction des bases orthonormées d'ondelettes à partir des filtres miroirs en quadrature tel qu'elle apparaît dans [4]. Nous montrons que leur régularité est liée à une mesure invariante pour la transformation ω → 2ω mod-2π. Cette méthode permet d'obtenir le facteur exact qui relie asymptotiquement la régularité des ondelettes constriutes dans [4] à la taille de leur support.
The purpose of this paper is to provide a method of reduction of some problems concerning families of linear operators with domains to a problem in which all the operators have the same domain . To do it we propose to construct a family of automorphisms of a given Banach space X having two properties: (i) the mapping is sufficiently regular and (ii) for t ∈ . Three effective constructions are presented: for elliptic operators of second order with the Robin boundary condition with a parameter;...