-orbit functions.
We prove an equiconvergence theorem for Laguerre expansions with partial sums related to partial sums of the (non-modified) Hankel transform. Combined with an equiconvergence theorem recently proved by Colzani, Crespi, Travaglini and Vignati this gives, via the Carleson-Hunt theorem, a.e. convergence results for partial sums of Laguerre function expansions.
Here we prove results about Riesz summability of classical Laguerre series, locally uniformly or on the Lebesgue set of the function f such that (∫(1 + x)^(mp) |f(x)|^p dx )^(1/p) < ∞, for some p and m satisfying 1 ≤ p ≤ ∞, −∞ < m < ∞.
The aim of this paper is the study of the convergence of algorithms involved in the resolution of two scale equations. They are fixed point algorithms, often called cascade algorithms, which are used in the construction of wavelets. We study their speed of convergence in Lebesgue and Besov spaces, and show that the quality of the convergence depends on two independent factors. The first one, as we could foresee, is the regularity of the scaling function which is the solution of the equation. The...
We prove an exact controllability result for thin cups using the Fourier method and recent improvements of Ingham type theorems, given in a previous paper [2].