Absolut-Stetigkeit und Träger von Gauß-Verteilungen auf lokalkompakten Gruppen.
Let T be a d×d matrix with integer entries and with eigenvalues >1 in modulus. Let f be a lipschitzian function of positive order. We prove that the series converges almost everywhere with respect to Lebesgue measure provided that .
Over a non-archimedean local field the absolute value, raised to any positive power , is a negative definite function and generates (the analogue of) the symmetric stable process. For , this process is transient with potential operator given by M. Riesz’ kernel. We develop this potential theory purely analytically and in an explicit manner, obtaining special features afforded by the non-archimedean setting ; e.g. Harnack’s inequality becomes an equality.