Some aspects of harmonic analysis on free groups
For two Banach algebras and ℬ, an interesting product , called the θ-Lau product, was recently introduced and studied for some nonzero characters θ on ℬ. Here, we characterize some notions of amenability as approximate amenability, essential amenability, n-weak amenability and cyclic amenability between and ℬ and their θ-Lau product.
Let A be a semisimple commutative regular tauberian Banach algebra with spectrum . In this paper, we study the norm spectra of elements of and present some applications. In particular, we characterize the discreteness of in terms of norm spectra. The algebra A is said to have property (S) if, for all , φ has a nonempty norm spectrum. For a locally compact group G, let denote the C*-algebra generated by left translation operators on and denote the discrete group G. We prove that the Fourier...
The aim of this paper is to study mean value operators on the reduced Heisenberg group Hn/Γ, where Hn is the Heisenberg group and Γ is the subgroup {(0,2πk): k ∈ Z} of Hn.
Consider a semigroup action on a set. We derive conditions, in terms of the induced action of the semigroup on {0,1}-valued probability charges, which ensure that all invariant probability charges are strongly continuous.
We introduce and study strongly invariant means m on commutative hypergroups, , x ∈ K, . We show that the existence of such means is equivalent to a strong Reiter condition. For polynomial hypergroups we derive a growth condition for the Haar weights which is equivalent to the existence of strongly invariant means. We apply this characterization to show that there are commutative hypergroups which do not possess strongly invariant means.
We present a computer-assisted analysis of combinatorial properties of the Cayley graphs of certain finitely generated groups: given a group with a finite set of generators, we study the density of the corresponding Cayley graph, that is, the least upper bound for the average vertex degree (= number of adjacent edges) of any finite subgraph. It is known that an -generated group is amenable if and only if the density of the corresponding Cayley graph equals to . We test amenable and non-amenable...
We prove that the automorphism group of the random lattice is not amenable, and we identify the universal minimal flow for the automorphism group of the random distributive lattice.