Displaying 681 – 700 of 2289

Showing per page

Finite union of H-sets and countable compact sets

Sylvain Kahane (1993)

Colloquium Mathematicae

In [2], D. E. Grow and M. Insall construct a countable compact set which is not the union of two H-sets. We make precise this result in two directions, proving such a set may be, but need not be, a finite union of H-sets. Descriptive set theory tools like Cantor-Bendixson ranks are used; they are developed in the book of A. S. Kechris and A. Louveau [6]. Two proofs are presented; the first one is elementary while the second one is more general and useful. Using the last one I prove in my thesis,...

Flensted-Jensen's functions attached to the Landau problem on the hyperbolic disc

Zouhaïr Mouayn (2007)

Applications of Mathematics

We give an explicit expression of a two-parameter family of Flensted-Jensen’s functions Ψ μ , α on a concrete realization of the universal covering group of U ( 1 , 1 ) . We prove that these functions are, up to a phase factor, radial eigenfunctions of the Landau Hamiltonian on the hyperbolic disc with a magnetic field strength proportional to μ , and corresponding to the eigenvalue 4 α ( α - 1 ) .

Folner sets of alternate directed groups

Jérémie Brieussel (2014)

Annales de l’institut Fourier

An explicit family of Folner sets is constructed for some directed groups acting on a rooted tree of sublogarithmic valency by alternate permutations. In the case of bounded valency, these groups were known to be amenable by probabilistic methods. The present construction provides a new and independent proof of amenability, using neither random walks, nor word length.

Fonctions définies dans le plan et vérifiant certaines propriétés de moyenne

Alain Yger (1981)

Annales de l'institut Fourier

Soit a un réel de ] 0 , 1 [ . Nous étudions le système d’équations de convolution suivant ( * ) x R 2 , f ( x ) = 1 4 ϵ = ± 1 ϵ ' = ± 1 f ( x + ( ϵ , ϵ ' ) ) = 1 4 ϵ = ± 1 ϵ ' = ± 1 f ( x + a ( ϵ , ϵ ' ) ) . Nous démontrons que les exponentielles polynômes solutions de ( * ) sont denses dans l’espace des solutions C du système d’équations; l’idéal de ' ( R 2 ) engendré par les transformées de Fourier des deux mesures intervenant ici est “slowly decreasing” au sens de Berenstein-Taylor. Lorsque a n’est pas un nombre de Liouville, nous montrons qu’il existe un ouvert relativement compact telle que toute solution distribution de ( * ) régulière...

Currently displaying 681 – 700 of 2289