Displaying 1301 – 1320 of 2289

Showing per page

On positive Rockland operators

Pascal Auscher, A. ter Elst, Derek Robinson (1994)

Colloquium Mathematicae

Let G be a homogeneous Lie group with a left Haar measure dg and L the action of G as left translations on L p ( G ; d g ) . Further, let H = dL(C) denote a homogeneous operator associated with L. If H is positive and hypoelliptic on L 2 we prove that it is closed on each of the L p -spaces, p ∈ 〈 1,∞〉, and that it generates a semigroup S with a smooth kernel K which, with its derivatives, satisfies Gaussian bounds. The semigroup is holomorphic in the open right half-plane on all the L p -spaces, p ∈ [1,∞]. Further extensions...

On Riesz product measures ; mutual absolute continuity and singularity

Shelby J. Kilmer, Sadahiro Saeki (1988)

Annales de l'institut Fourier

We give some criteria for mutual absolute continuity and for singularity of Riesz product measures on locally compact abelian groups. The first section gives the definition of such a measure which is more general than the usual definition. The second section provides three sufficient conditions for one Riesz product measure to be absolutely continuous with respect to another. One of our results contains a theorem of Brown-Moran-Ritter as a special case. The final section deals with random Riesz...

On Schwartz's theorem for the motion group

Yitzhak Weit (1980)

Annales de l'institut Fourier

Schwartz’s Theorem in spectral synthesis of continuous functions on the real is generalized to the Euclidean motion group. The rightsided analogue of Schwartz’s Theorem for the motion group is reduced to the study of some invariant subspaces of continuous functions on R 2 .

Currently displaying 1301 – 1320 of 2289