Displaying 1461 – 1480 of 2289

Showing per page

Paraproduit sur le groupe de Heisenberg et applications.

Hajer Bahouri, Isabelle Gallagher (2001)

Revista Matemática Iberoamericana

We adapt the homogeneous Littlewood-Paley decomposition on the Heisenberg group constructed by H. Bahouri, P. Gérard et C.-J. Xu in [4] to the inhomogeneous case, which enables us to build paraproduct operators, similar to those defined by J.-M. Bony in [5]; although there is no simple formula for the Fourier transform of the product of two functions, some spectral localization properties of the classical case are preserved on the Heisenberg group after the product has been taken. Using the dyadic...

Periodic harmonic functions on lattices and points count in positive characteristic

Mikhail Zaidenberg (2009)

Open Mathematics

This survey deals with pluri-periodic harmonic functions on lattices with values in a field of positive characteristic. We mention, as a motivation, the game “Lights Out” following the work of Sutner [20], Goldwasser- Klostermeyer-Ware [5], Barua-Ramakrishnan-Sarkar [2, 19], Hunzikel-Machiavello-Park [12] e.a.; see also [22, 23] for a more detailed account. Our approach uses harmonic analysis and algebraic geometry over a field of positive characteristic.

Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces

Shangquan Bu, Yi Fang (2008)

Studia Mathematica

We study the maximal regularity on different function spaces of the second order integro-differential equations with infinite delay ( P ) u ' ' ( t ) + α u ' ( t ) + d / d t ( - t b ( t - s ) u ( s ) d s ) = A u ( t ) - - t a ( t - s ) A u ( s ) d s + f ( t ) (0 ≤ t ≤ 2π) with periodic boundary conditions u(0) = u(2π), u’(0) = u’(2π), where A is a closed operator in a Banach space X, α ∈ ℂ, and a,b ∈ L¹(ℝ₊). We use Fourier multipliers to characterize maximal regularity for (P). Using known results on Fourier multipliers, we find suitable conditions on the kernels a and b under which necessary and sufficient conditions...

Periodicity, almost periodicity for time scales and related functions

Chao Wang, Ravi P. Agarwal, Donal O’Regan (2016)

Nonautonomous Dynamical Systems

In this paper, we study almost periodic and changing-periodic time scales considered byWang and Agarwal in 2015. Some improvements of almost periodic time scales are made. Furthermore, we introduce a new concept of periodic time scales in which the invariance for a time scale is dependent on an translation direction. Also some new results on periodic and changing-periodic time scales are presented.

Perron-Frobenius operators and the Klein-Gordon equation

Francisco Canto-Martín, Håkan Hedenmalm, Alfonso Montes-Rodríguez (2014)

Journal of the European Mathematical Society

For a smooth curve Γ and a set Λ in the plane 2 , let A C ( Γ ; Λ ) be the space of finite Borel measures in the plane supported on Γ , absolutely continuous with respect to the arc length and whose Fourier transform vanishes on Λ . Following [12], we say that ( Γ , Λ ) is a Heisenberg uniqueness pair if A C ( Γ ; Λ ) = { 0 } . In the context of a hyperbola Γ , the study of Heisenberg uniqueness pairs is the same as looking for uniqueness sets Λ of a collection of solutions to the Klein-Gordon equation. In this work, we mainly address the...

Pluriharmonic functions on symmetric tube domains with BMO boundary values

Ewa Damek, Jacek Dziubański, Andrzej Hulanicki, Jose L. Torrea (2002)

Colloquium Mathematicae

Let 𝓓 be a symmetric Siegel domain of tube type and S be a solvable Lie group acting simply transitively on 𝓓. Assume that L is a real S-invariant second order operator that satisfies Hörmander's condition and annihilates holomorphic functions. Let H be the Laplace-Beltrami operator for the product of upper half planes imbedded in 𝓓. We prove that if F is an L-Poisson integral of a BMO function and HF = 0 then F is pluriharmonic. Some other related results are also considered.

Point derivations on the L¹-algebra of polynomial hypergroups

Rupert Lasser (2009)

Colloquium Mathematicae

We investigate whether the L¹-algebra of polynomial hypergroups has non-zero bounded point derivations. We show that the existence of such point derivations heavily depends on growth properties of the Haar weights. Many examples are studied in detail. We can thus demonstrate that the L¹-algebras of hypergroups have properties (connected with amenability) that are very different from those of groups.

Pointwise convergence of the Fourier transform on locally compact abelian groups.

María L. Torres de Squire (1993)

Publicacions Matemàtiques

We extend to locally compact abelian groups, Fejer's theorem on pointwise convergence of the Fourier transform. We prove that lim φU * f(y) = f (y) almost everywhere for any function f in the space (LP, l∞)(G) (hence in LP(G)), 2 ≤ p ≤ ∞, where {φU} is Simon's generalization to locally compact abelian groups of the summability Fejer Kernel. Using this result, we extend to locally compact abelian groups a theorem of F. Holland on the Fourier transform of unbounded measures of type q.

Pointwise estimates for densities of stable semigroups of measures

Paweł Głowacki, Waldemar Hebisch (1993)

Studia Mathematica

Let μ t be a symmetric α-stable semigroup of probability measures on a homogeneous group N, where 0 < α < 2. Assume that μ t are absolutely continuous with respect to Haar measure and denote by h t the corresponding densities. We show that the estimate h t ( x ) t Ω ( x / | x | ) | x | - n - α , x≠0, holds true with some integrable function Ω on the unit sphere Σ if and only if the density of the Lévy measure of the semigroup belongs locally to the Zygmund class LlogL(N╲e). The problem turns out to be related to the properties of the maximal...

Pointwise multipliers on weighted BMO spaces

Eiichi Nakai (1997)

Studia Mathematica

Let E and F be spaces of real- or complex-valued functions defined on a set X. A real- or complex-valued function g defined on X is called a pointwise multiplier from E to F if the pointwise product fg belongs to F for each f ∈ E. We denote by PWM(E,F) the set of all pointwise multipliers from E to F. Let X be a space of homogeneous type in the sense of Coifman-Weiss. For 1 ≤ p < ∞ and for ϕ : X × + + , we denote by b m o ϕ , p ( X ) the set of all functions f L l o c p ( X ) such that s u p a X , r > 0 1 / ϕ ( a , r ) ( 1 / μ ( B ( a , r ) ) ʃ B ( a , r ) | f ( x ) - f B ( a , r ) | p d μ ) 1 / p < , where B(a,r) is the ball centered at a and of...

Currently displaying 1461 – 1480 of 2289