O použití distribucí v teorii lineárních dynamických soustav
MSC 2010: 45DB05, 45E05, 78A45We show that a certain axisymmetric hypersingular integral equation arising in problems of cracks in the elasticity theory may be explicitly solved in the case where the crack occupies a plane circle. We give three different forms of the resolving formula. Two of them involve regular kernels, while the third one involves a singular kernel, but requires less regularity assumptions on the the right-hand side of the equation.
We consider a phase field system based on the Maxwell Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Dirichlet boundary conditions. In particular, we prove, in one and two space dimensions, the existence of a solution which is strictly separated from the singularities of the nonlinear term and that the problem possesses a finite-dimensional global attractor in terms of exponential attractors.
We study an integro-differential operator Φ: H̅¹ → L² of Fredholm type and give sufficient conditions for Φ to be a diffeomorphism. An application to functional equations is presented.
2000 Mathematics Subject Classification: 45A05, 45B05, 45E05,45P05, 46E30We obtain a criterion of Fredholmness and formula for the Fredholm index of a certain class of one-dimensional integral operators M with a weak singularity in the kernel, from the variable exponent Lebesgue space L^p(·) ([a, b], ?) to the Sobolev type space L^α,p(·) ([a, b], ?) of fractional smoothness. We also give formulas of closed form solutions ϕ ∈ L^p(·) of the 1st kind integral equation M0ϕ = f, known as the generalized...