Existence, uniqueness and successive approximations for a class of integral-functional equations.
Galerkin discretizations of integral equations in require the evaluation of integrals where S(1),S(2) are d-simplices and g has a singularity at x = y. We assume that g is Gevrey smooth for xy and satisfies bounds for the derivatives which allow algebraic singularities at x = y. This holds for kernel functions commonly occurring in integral equations. We construct a family of quadrature rules using N function evaluations of g which achieves exponential convergence |I – | ≤C exp(–rNγ) with...
Galerkin discretizations of integral equations in require the evaluation of integrals where S(1),S(2) are d-simplices and g has a singularity at x = y. We assume that g is Gevrey smooth for xy and satisfies bounds for the derivatives which allow algebraic singularities at x = y. This holds for kernel functions commonly occurring in integral equations. We construct a family of quadrature rules using N function evaluations of g which achieves exponential convergence |I – | ≤C exp(–rNγ) with...
In this paper we study the asymptotic behavior of a system composed of an integro-partial differential equation that models the longitudinal oscillation of a beam with a memory effect to which a thermal effect has been given by the Green-Naghdi model type III, being physically more accurate than the Fourier and Cattaneo models. To achieve this goal, we will use arguments from spectral theory, considering a suitable hypothesis of smoothness on the integro-partial differential equation.