Displaying 101 – 120 of 233

Showing per page

Generalized Lions-Peetre methods of constants and means and operator ideals.

Antonio Manzano, Mieczyslaw Mastylo (2007)

Collectanea Mathematica

We establish results on interpolation of Rosenthal operators, Banach-Saks operators, Asplund operators and weakly compact operators by means of generalized Lions-Peetre methods of constants and means. Applications are presented for the K-method space generated by the Calderón-Lozanovskii space parameters.

Generalized M-norms on ordered normed spaces

I. Tzschichholtz, M. R. Weber (2005)

Banach Center Publications

L-norms and M-norms on Banach lattices, unit-norms and base norms on ordered vector spaces are well known. In this paper m- and m -norms are introduced on ordered normed spaces. They generalize the notions of the M-norm and the order-unit norm, possess also some interesting properties and can be characterized by means of the constants of reproducibility of cones. In particular, the dual norm of an ordered Banach space with a closed cone turns out to be additive on the dual cone if and only if the...

Generalized n -Laplacian: semilinear Neumann problem with the critical growth

Robert Černý (2013)

Applications of Mathematics

Let Ω n , n 2 , be a bounded connected domain of the class C 1 , θ for some θ ( 0 , 1 ] . Applying the generalized Moser-Trudinger inequality without boundary condition, the Mountain Pass Theorem and the Ekeland Variational Principle, we prove the existence and multiplicity of nontrivial weak solutions to the problem u W 1 L Φ ( Ω ) , - div Φ ' ( | u | ) u | u | + V ( x ) Φ ' ( | u | ) u | u | = f ( x , u ) + μ h ( x ) in Ω , u 𝐧 = 0 on Ω , where Φ is a Young function such that the space W 1 L Φ ( Ω ) is embedded into exponential or multiple exponential Orlicz space, the nonlinearity f ( x , t ) has the corresponding critical growth, V ( x ) is a continuous potential,...

Generalized n-Laplacian: boundedness of weak solutions to the Dirichlet problem with nonlinearity in the critical growth range

Robert Černý (2014)

Open Mathematics

Let n ≥ 2 and let Ω ⊂ ℝn be an open set. We prove the boundedness of weak solutions to the problem u W 0 1 L Φ Ω a n d - d i v Φ ' u u u + V x Φ ' u u u = f x , u + μ h x i n Ω , where ϕ is a Young function such that the space W 01 L Φ(Ω) is embedded into an exponential or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth, V(x) is a continuous potential, h ∈ L Φ(Ω) is a non-trivial continuous function and µ ≥ 0 is a small parameter. We consider two classical cases: the case of Ω being an open bounded set and the case of Ω =...

Generalized non-commutative tori

Chun-Gil Park (2002)

Studia Mathematica

The generalized non-commutative torus T ϱ k of rank n is defined by the crossed product A m / k × α × α . . . × α , where the actions α i of ℤ on the fibre M k ( ) of a rational rotation algebra A m / k are trivial, and C * ( k × k ) × α × α . . . × α is a non-commutative torus A ϱ . It is shown that T ϱ k is strongly Morita equivalent to A ϱ , and that T ϱ k M p is isomorphic to A ϱ M k ( ) M p if and only if the set of prime factors of k is a subset of the set of prime factors of p.

Generalized notions of amenability for a class of matrix algebras

Amir Sahami (2019)

Commentationes Mathematicae Universitatis Carolinae

We investigate the amenability and its related homological notions for a class of I × I -upper triangular matrix algebra, say UP ( I , A ) , where A is a Banach algebra equipped with a nonzero character. We show that UP ( I , A ) is pseudo-contractible (amenable) if and only if I is singleton and A is pseudo-contractible (amenable), respectively. We also study pseudo-amenability and approximate biprojectivity of UP ( I , A ) .

Generalized precompactness and mixed topologies.

Jurie Conradie (1993)

Collectanea Mathematica

The equicontinuous sets of locally convex generalized inducted limit (or mixed) topologies are characterized as generalized precompact sets. Uniformly pre-Lebesgue and Lebesgue topologies in normed Riesz spaces are investigated and it is shown that order precompactness and mixed topologies can be used to great advantage in the study of these topologies.

Generalized q-deformed Gaussian random variables

Marek Bożejko, Hiroaki Yoshida (2006)

Banach Center Publications

We produce generalized q-Gaussian random variables which have two parameters of deformation. One of them is, of course, q as for the usual q-deformation. We also investigate the corresponding Wick formulas, which will be described by some joint statistics on pair partitions.

Generalized Sobolev Spaces of Exponential Type Associated with the Dunkl Operators

Assal, Miloud, Bouguila, Raouya (2006)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 35E45In this paper we study generalized Sobolev spaces H^sG of exponential type associated with the Dunkl operators based on the space G of test functions for generalized hyperfunctions and investigate their properties. Moreover, we introduce a class of symbols of exponential type and their associated pseudodifferential operators related to the Dunkl operators, which act naturally on H^sG.

Currently displaying 101 – 120 of 233