The search session has expired. Please query the service again.
Displaying 281 –
300 of
336
In the theory of normed spaces, we have the concept of bounded linear functionals and dual spaces. Now, given an -normed space, we are interested in bounded multilinear -functionals and -dual spaces. The concept of bounded multilinear -functionals on an -normed space was initially intoduced by White (1969), and studied further by Batkunde et al., and Gozali et al. (2010). In this paper, we revisit the definition of bounded multilinear -functionals, introduce the concept of -dual spaces, and...
∗Participant in Workshop in Linear Analysis and Probability, Texas A & M University,
College Station, Texas, 2000. Research partially supported by the Edmund Landau Center
for Research in Mathematical Analysis and related areas, sponsored by Minerva Foundation
(Germany).The space K[0, 1] of differences of convex functions on the
closed interval [0, 1] is investigated as a dual Banach space. It is proved
that a continuous function f on [0, 1] belongs to K[0, 1]
The main result: the dual of separable Banach space X contains a total subspace which is not norming over any infinite-dimensional subspace of X if and only if X has a nonquasireflexive quotient space with a strictly singular quotient mapping.
Suppose that μ is a Radon measure on , which may be non-doubling. The only condition assumed on μ is a growth condition, namely, there is a constant C₀ > 0 such that for all x ∈ supp(μ) and r > 0,
μ(B(x,r)) ≤ C₀rⁿ,
where 0 < n ≤ d. The authors provide a theory of Triebel-Lizorkin spaces for 1 < p < ∞, 1 ≤ q ≤ ∞ and |s| < θ, where θ > 0 is a real number which depends on the non-doubling measure μ, C₀, n and d. The method does not use the vector-valued maximal function inequality...
The main result of this paper is the following: A separable Banach space X is reflexive if and only if the infimum of the Gelfand numbers of any bounded linear operator defined on X can be computed by means of just one sequence on nested, closed, finite codimensional subspaces with null intersection.
Soit un espace et soit un sous-espace réflexif de dimension infinie de . Nous montrons que le quotient vérifie le théorème de Grothendieck, c’est-à-dire que tout opérateur de dans un espace de Hilbert est 1-sommant; par ailleurs, n’est pas un espace . Cela permet de répondre négativement à une question de Lindenstrauss-Pełczyński ainsi qu’à une question similaire de Grothendieck.
Currently displaying 281 –
300 of
336