Every nonreflexive Banach lattice has the packaging constant equal to 1/2.
We show that every separable complex L₁-predual space X is contractively complemented in the CAR-algebra. As an application we deduce that the open unit ball of X is a bounded homogeneous symmetric domain.
It follows from our earlier results [Israel J. Math., to appear] that in the Gurariy space G every finite-dimensional smooth subspace is contained in a bigger smooth subspace. We show that this property does not characterise the Gurariy space among Lindenstrauss spaces and we provide various examples to show that C(K) spaces do not have this property.
In this manuscript we find another class of real Banach spaces which admit vector-valued Banach limits different from the classes found in [6, 7]. We also characterize the separating subsets of ℓ∞(X). For this we first need to study when the space of almost convergent sequences is closed in the space of bounded sequences, which turns out to happen only when the underlying space is complete. Finally, a study on the extremal structure of the set of vector-valued Banach limits is conducted when the...
Let be the subspace of finite elements of an Orlicz space endowed with the Luxemburg norm. The main theorem says that a compact linear operator is extreme if and only if on a dense subset of , where is a compact Hausdorff topological space and . This is done via the description of the extreme points of the space of continuous functions , being an Orlicz space equipped with the Orlicz norm (conjugate to the Luxemburg one). There is also given a theorem on closedness of the set of extreme...
We investigate which points in the unit sphere of the Besicovitch--Orlicz space of almost periodic functions, equipped with the Luxemburg norm, are extreme points. Sufficient conditions for the strict convexity of this space are also given.
We characterize all the extreme points of the unit ball in the space of trilinear forms on the Hilbert space . This answers a question posed by R. Grząślewicz and K. John [7], who solved the corresponding problem for the real Hilbert space . As an application we determine the best constant in the inequality between the Hilbert-Schmidt norm and the norm of trilinear forms.