Biholomorphic mappings and Banach function modules.
Almost transitive superreflexive Banach spaces have been considered in [7] (see also [4] and [6]), where it is shown that such spaces are uniformly convex and uniformly smooth. We prove that convex transitive Banach spaces are either almost transitive and superreflexive (hence uniformly smooth) or extremely rough. The extreme roughness of a Banach space means that, for every element in the unit sphere of , we have We note that, in general, the property of convex transitivity for a Banach...
Let E be a locally convex topological Hausdorff space, K a nonempty compact convex subset of E, μ a regular Borel probability measure on E and γ > 0. We say that the measure μ γ-represents a point x ∈ K if for any f ∈ E*. In this paper a continuous version of the Choquet theorem is proved, namely, if P is a continuous multivalued mapping from a metric space T into the space of nonempty, bounded convex subsets of a Banach space X, then there exists a weak* continuous family of regular Borel...
In a former paper we describe the geometric properties of the space of continuous functions with values in the space of operators acting on a Hilbert space. In particular we show that dent B(L(H)) = ext B(L(H)) if dim H < 8 and card K < 8 and dent B(L(H)) = 0 if dim H < 8 or card K = 8, and x-ext C(K,L(H)) = ext C(K,L(H)).
We deal with the weak Radon-Nikodým property in connection with the dual space of (X,Y), the space of compact operators from a Banach space X to a Banach space Y. First, under the weak Radon-Nikodým property, we give a representation of that dual. Next, using this representation, we provide some applications to the dual spaces of (X,Y) and , the space of weak*-weakly continuous operators.
Several properties of weakly p-summable sequences and of the scale of p-converging operators (i.e., operators transforming weakly p-summable sequences into convergent sequences) in projective and natural tensor products with an lp space are considered. The last section studies the Dunford-Pettis property of order p (i.e., every weakly compact operator is p-convergent) in those spaces.