Displaying 61 – 80 of 172

Showing per page

Linear topological properties of the Lumer-Smirnov class of the polydisc

Marek Nawrocki (1992)

Studia Mathematica

Linear topological properties of the Lumer-Smirnov class L N ( n ) of the unit polydisc n are studied. The topological dual and the Fréchet envelope are described. It is proved that L N ( n ) has a weak basis but it is nonseparable in its original topology. Moreover, it is shown that the Orlicz-Pettis theorem fails for L N ( n ) .

Metric spaces nonembeddable into Banach spaces with the Radon-Nikodým property and thick families of geodesics

Mikhail I. Ostrovskii (2014)

Fundamenta Mathematicae

We show that a geodesic metric space which does not admit bilipschitz embeddings into Banach spaces with the Radon-Nikodým property does not necessarily contain a bilipschitz image of a thick family of geodesics. This is done by showing that no thick family of geodesics is Markov convex, and comparing this result with results of Cheeger-Kleiner, Lee-Naor, and Li. The result contrasts with the earlier result of the author that any Banach space without the Radon-Nikodým property contains a bilipschitz...

Norm fragmented weak* compact sets.

J. E. Jayne, I. Namioka, C. A. Rogers (1990)

Collectanea Mathematica

A Banach space which is a Cech-analytic space in its weak topology has fourteen measure-theoretic, geometric and topological properties. In a dual Banach space with its weak-star topology essentially the same properties are all equivalent one to another.

Currently displaying 61 – 80 of 172