Displaying 21 – 40 of 42

Showing per page

The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of c 0

L. Drewnowski, G. Emmanuele (1993)

Studia Mathematica

Let (S, ∑, m) be any atomless finite measure space, and X any Banach space containing a copy of c 0 . Then the Bochner space L 1 ( m ; X ) is uncomplemented in ccabv(∑,m;X), the Banach space of all m-continuous vector measures that are of bounded variation and have a relatively compact range; and ccabv(∑,m;X) is uncomplemented in cabv(∑,m;X). It is conjectured that this should generalize to all Banach spaces X without the Radon-Nikodym property.

The structure of Lindenstrauss-Pełczyński spaces

Jesús M. F. Castillo, Yolanda Moreno, Jesús Suárez (2009)

Studia Mathematica

Lindenstrauss-Pełczyński (for short ℒ) spaces were introduced by these authors [Studia Math. 174 (2006)] as those Banach spaces X such that every operator from a subspace of c₀ into X can be extended to the whole c₀. Here we obtain the following structure theorem: a separable Banach space X is an ℒ-space if and only if every subspace of c₀ is placed in X in a unique position, up to automorphisms of X. This, in combination with a result of Kalton [New York J. Math. 13 (2007)], provides a negative...

The structure of nonseparable Banach spaces with uncountable unconditional bases.

Carlos Finol, Marek Wójtowicz (2005)

RACSAM

Sea X un espacio de Banach con una base incondicional de Schauder no numerable, y sea Y un subespacio arbitrario no separable de X. Si X no contiene una copia isomorfa de l1(J) con J no numerable entonces (1) la densidad de Y y la débil*-densidad de Y* son iguales, y (2) la bola unidad de X* es débil* sucesionalmente compacta. Además, (1) implica que Y contiene subconjuntos grandes formados por elementos disjuntos dos a dos, y una propiedad similar se verifica para las bases incondicionales no numerables...

The weak Gelfand-Phillips property in spaces of compact operators

Ioana Ghenciu (2017)

Commentationes Mathematicae Universitatis Carolinae

For Banach spaces X and Y , let K w * ( X * , Y ) denote the space of all w * - w continuous compact operators from X * to Y endowed with the operator norm. A Banach space X has the w G P property if every Grothendieck subset of X is relatively weakly compact. In this paper we study Banach spaces with property w G P . We investigate whether the spaces K w * ( X * , Y ) and X ϵ Y have the w G P property, when X and Y have the w G P property.

Topological and algebraic genericity of divergence and universality

Frédéric Bayart (2005)

Studia Mathematica

We give general theorems which assert that divergence and universality of certain limiting processes are generic properties. We also define the notion of algebraic genericity, and prove that these properties are algebraically generic as well. We show that universality can occur with Dirichlet series. Finally, we give a criterion for the set of common hypercyclic vectors of a family of operators to be algebraically generic.

Topological type of weakly closed subgroups in Banach spaces

Tadeusz Dobrowolski, Janusz Grabowski, Kazuhiro Kawamura (1996)

Studia Mathematica

The main result says that nondiscrete, weakly closed, containing no nontrivial linear subspaces, additive subgroups in separable reflexive Banach spaces are homeomorphic to the complete Erdős space. Two examples of such subgroups in 1 which are interesting from the Banach space theory point of view are discussed.

Currently displaying 21 – 40 of 42