Page 1

Displaying 1 – 8 of 8

Showing per page

Projections from L ( X , Y ) onto K ( X , Y )

Kamil John (2000)

Commentationes Mathematicae Universitatis Carolinae

Generalization of certain results in [Sap] and simplification of the proofs are given. We observe e.g.: Let X and Y be Banach spaces such that X is weakly compactly generated Asplund space and X * has the approximation property (respectively Y is weakly compactly generated Asplund space and Y * has the approximation property). Suppose that L ( X , Y ) K ( X , Y ) and let 1 < λ < 2 . Then X (respectively Y ) can be equivalently renormed so that any projection P of L ( X , Y ) onto K ( X , Y ) has the sup-norm greater or equal to λ .

Property ( 𝐰𝐋 ) and the reciprocal Dunford-Pettis property in projective tensor products

Ioana Ghenciu (2015)

Commentationes Mathematicae Universitatis Carolinae

A Banach space X has the reciprocal Dunford-Pettis property ( R D P P ) if every completely continuous operator T from X to any Banach space Y is weakly compact. A Banach space X has the R D P P (resp. property ( w L ) ) if every L -subset of X * is relatively weakly compact (resp. weakly precompact). We prove that the projective tensor product X π Y has property ( w L ) when X has the R D P P , Y has property ( w L ) , and L ( X , Y * ) = K ( X , Y * ) .

Property (wM*) and the unconditional metric compact approximation property

Ăsvald Lima (1995)

Studia Mathematica

The main objective of this paper is to give a simple proof for a larger class of spaces of the following theorem of Kalton and Werner. (a) X has property (M*), and (b) X has the metric compact approximation property Our main tool is a new property (wM*) which we show to be closely related to the unconditional metric approximation property.

Pseudocomplémentation dans les espaces de Banach

Patric Rauch (1991)

Studia Mathematica

This paper introduces the following definition: a closed subspace Z of a Banach space E is pseudocomplemented in E if for every linear continuous operator u from Z to Z there is a linear continuous extension ū of u from E to E. For instance, every subspace complemented in E is pseudocomplemented in E. First, the pseudocomplemented hilbertian subspaces of L ¹ are characterized and, in L p with p in [1, + ∞[, classes of closed subspaces in which the notions of complementation and pseudocomplementation...

Currently displaying 1 – 8 of 8

Page 1