On the Brudnyi-Krugljak duality theory of spaces formed by the K-method of interpolation.
We describe the geometric structure of the -characteristic of fractional powers of bounded or compact linear operators over domains with arbitrary measure. The description builds essentially on the Riesz-Thorin and Marcinkiewicz-Stein-Weiss- Ovchinnikov interpolation theorems, as well as on the Krasnosel’skij-Krejn factorization theorem.
Let G be a locally compact group. We use the canonical operator space structure on the spaces for p ∈ [1,∞] introduced by G. Pisier to define operator space analogues of the classical Figà-Talamanca-Herz algebras . If p ∈ (1,∞) is arbitrary, then and the inclusion is a contraction; if p = 2, then OA₂(G) ≅ A(G) as Banach spaces, but not necessarily as operator spaces. We show that is a completely contractive Banach algebra for each p ∈ (1,∞), and that completely contractively for amenable...
Suppose E is fully symmetric Banach function space on (0,1) or (0,∞) or a fully symmetric Banach sequence space. We give necessary and sufficient conditions on f ∈ E so that its orbit Ω(f) is the closed convex hull of its extreme points. We also give an application to symmetrically normed ideals of compact operators on a Hilbert space.
We show how one can, in a unified way, calculate the Kottman and the packing constants of the Orlicz sequence space defined by an N-function, equipped with either the gauge or Orlicz norms. The values of these constants for a class of reflexive Orlicz sequence spaces are found, using a quantitative index of N-functions and some interpolation theorems. The exposition is essentially selfcontained.
Let 1 ≤ p ≤ ∞ and let be two weights on the unit circle such that . We prove that the couple of weighted Hardy spaces is a partial retract of . This completes previous work of the authors. More generally, we have a similar result for finite families of weighted Hardy spaces. We include some applications to interpolation.
We describe the behavior of ideal variations under interpolation methods associated to polygons.
The behavior of compactness under real interpolation real is discussed. Classical results due to Krasnoselskii, Lions-Peetre, Persson, and Hayakawa are described, as well as others obtained very recently by Edmunds, Potter, Fernández, and the author.
We give an equivalent expression for the K-functional associated to the pair of operator spaces (R,C) formed by the rows and columns respectively. This yields a description of the real interpolation spaces for the pair (Mₙ(R),Mₙ(C)) (uniformly over n). More generally, the same result is valid when Mₙ (or B(ℓ₂)) is replaced by any semi-finite von Neumann algebra. We prove a version of the non-commutative Khintchine inequalities (originally due to Lust-Piquard) that is valid for the Lorentz spaces...
We develop a new method of real interpolation for infinite families of Banach spaces that covers the methods of Lions-Peetre, Sparr for N spaces, Fernández for spaces and the recent method of Cobos-Peetre.
We describe the real interpolation spaces between given Marcinkiewicz spaces that have fundamental functions of the form t1/q (ln (e/t)a with the same exponent q. The spaces thus obtained are used for the proof of optimal interpolation theorem from [7], concerning spaces L∞,a,E.
We find necessary and sufficient conditions under which the norms of the interpolation spaces and are equivalent on N, where N is the kernel of a nonzero functional ψ ∈ (X₀ ∩ X₁)* and is the normed space N with the norm inherited from (i = 0,1). Our proof is based on reducing the problem to its partial case studied by Ivanov and Kalton, where ψ is bounded on one of the endpoint spaces. As an application we completely resolve the problem of when the range of the operator (S denotes the...
We prove a reiteration theorem for interpolationmethods defined by means of polygons, and a Wolff theorem for the case when the polygon has 3 or 4 vertices. In particular, we establish a Wolff theorem for Fernandez' spaces, which settles a problem left over in [5].
This note deals with interpolation methods defined by means of polygons. We show necessary and sufficient conditions for compactness of operators acting from a J-space into a K-space.
We study interpolation of bilinear operators by the polygons methods. We prove an interpolation theorem of type into spaces, and show the optimality of the precedings results.