On the structure of separable spaces (1 < p < ∞)
We study various Banach space properties of the dual space E* of a homogeneous Banach space (alias, a JB*-triple) E. For example, if all primitive M-ideals of E are maximal, we show that E* has the Alternative Dunford-Pettis property (respectively, the Kadec-Klee property) if and only if all biholomorphic automorphisms of the open unit ball of E are sequentially weakly continuous (respectively, weakly continuous). Those E for which E* has the weak* Kadec-Klee property are characterised by a compactness...