Correction to “Domains of attraction in several dimensions”
In this paper the author proved the boundedness of the multidimensional Hardy type operator in weighted Lebesgue spaces with variable exponent. As an application he proved the boundedness of certain sublinear operators on the weighted variable Lebesgue space. The proof of the boundedness of the multidimensional Hardy type operator in weighted Lebesgue spaces with a variable exponent does not contain any mistakes. But in the proof of the boundedness of certain sublinear operators on the weighted...
Here are given the figures of this paper, initially published with some omissions.
We give a corrected proof of Theorem 2.10 in our paper “Commutators on ” [Studia Math. 206 (2011), 175-190] for the case 1 < q < p < ∞. The case when 1 = q < p < ∞ remains open. As a consequence, the Main Theorem and Corollary 2.17 in that paper are only valid for 1 < p,q < ∞.
We observe that the notion of an almost -universal based Banach space, introduced in our earlier paper [1]: Banakh T., Garbulińska-Wegrzyn J., The universal Banach space with a -suppression unconditional basis, Comment. Math. Univ. Carolin. 59 (2018), no. 2, 195–206, is vacuous for . Taking into account this discovery, we reformulate Theorem 5.2 from [1] in order to guarantee that the main results of [1] remain valid.
We lift to homogeneous polynomials and multilinear mappings a linear result due to Lindenstrauss and Pełczyński for absolutely summing operators. We explore the notion of cotype to obtain stronger results and provide various examples of situations in which the space of absolutely summing homogeneous polynomials is different from the whole space of homogeneous polynomials. Among other consequences, these results enable us to obtain answers to some open questions about absolutely summing homogeneous...