Schauder bases and best approximation
Let E be a separable Banach space with the λ-bounded approximation property. We show that for each ϵ > 0 there is a Banach space F with a Schauder basis such that E is isometrically isomorphic to a 1-complemented subspace of F and, moreover, the sequence (Tₙ) of canonical projections in F has the properties and . This is a sharp quantitative version of a classical result obtained independently by Pełczyński and by Johnson, Rosenthal and Zippin.
We study the interplay between unconditional decompositions and the R-boundedness of collections of operators. In particular, we get several multiplier results of Marcinkiewicz type for -spaces of functions with values in a Banach space X. Furthermore, we show connections between the above-mentioned properties and geometric properties of the Banach space X.
Let X and Y be two Banach spaces, each isomorphic to a complemented subspace of the other. In 1996, W. T. Gowers solved the Schroeder-Bernstein Problem for Banach spaces by showing that X is not necessarily isomorphic to Y. In this paper, we obtain necessary and sufficient conditions on the quintuples (p,q,r,s,t) in ℕ for X to be isomorphic to Y whenever ⎧, ⎨ ⎩ . Such quintuples are called Schroeder-Bernstein quintuples for Banach spaces and they yield a unification of the known decomposition...
We consider 1-complemented subspaces (ranges of contractive projections) of vector-valued spaces , where X is a Banach space with a 1-unconditional basis and p ∈ (1,2) ∪ (2,∞). If the norm of X is twice continuously differentiable and satisfies certain conditions connecting the norm and the notion of disjointness with respect to the basis, then we prove that every 1-complemented subspace of admits a basis of mutually disjoint elements. Moreover, we show that every contractive projection is then...
We say that a collection of subsets of has property if there is a set and point-countable collections of closed subsets of such that for any there is a finite subcollection of such that . Then we prove that any compact space is Corson if and only if it has a point-- base. A characterization of Corson compacta in terms of (strong) point network is also given. This provides an answer to an open question in “A Biased View of Topology as a Tool in Functional Analysis” (2014) by...
In this paper we make use of a new concept of φ-stability for Banach spaces, where φ is a function. If a Banach space X and the function φ satisfy some natural conditions, then X is saturated with subspaces that are φ-stable (cf. Lemma 2.1 and Corollary 7.8). In a φ-stable Banach space one can easily construct basic sequences which have a property P(φ) defined in terms of φ (cf. Theorem 4.5). This leads us, for appropriate functions φ, to new results on the existence of unconditional...
We show that if is a boundedly complete, unconditional Schauder decomposition of a Banach space X, then X is weakly sequentially complete whenever is weakly sequentially complete for each k ∈ ℕ. Then through semi-embeddings, we give a new proof of Lewis’s result: if one of Banach spaces X and Y has an unconditional basis, then X ⊗̂ Y, the projective tensor product of X and Y, is weakly sequentially complete whenever both X and Y are weakly sequentially complete.
The aim of the paper is two-fold. First, we investigate the ψ-Bessel potential spaces on and study some of their properties. Secondly, we consider the fractional powers of an operator of the form , , where is an operator with real continuous negative definite symbol ψ: ℝⁿ → ℝ. We define the domain of the operator and prove that with this domain it generates an -sub-Markovian semigroup.
Suppose that and are Banach spaces and that the Banach space is their complete tensor product with respect to some tensor product topology . A uniformly bounded -valued function need not be integrable in with respect to a -valued measure, unless, say, and are Hilbert spaces and is the Hilbert space tensor product topology, in which case Grothendieck’s theorem may be applied. In this paper, we take an index and suppose that and are -spaces with the associated -tensor product...
In this article, the separability of real normed spaces and its properties are mainly formalized. In the first section, it is proved that a real normed subspace is separable if it is generated by a countable subset. We used here the fact that the rational numbers form a dense subset of the real numbers. In the second section, the basic properties of the separable normed spaces are discussed. It is applied to isomorphic spaces via bounded linear operators and double dual spaces. In the last section,...
In this survey we show that the separable quotient problem for Banach spaces is equivalent to several other problems for Banach space theory. We give also several partial solutions to the problem.