A Banach space determined by the Weil height
A Banach space X with a Schauder basis is defined to have the restricted quotient hereditarily indecomposable property if X/Y is hereditarily indecomposable for any infinite-codimensional subspace Y with a successive finite-dimensional decomposition on the basis of X. The following dichotomy theorem is proved: any infinite-dimensional Banach space contains a quotient of a subspace which either has an unconditional basis, or has the restricted quotient hereditarily indecomposable property.
We prove that the symmetric convexified Tsirelson space is of weak cotype 2 but not of cotype 2.
We prove that, for a compact metric space X not reduced to a point, the existence of a bilinear mapping ⋄: C(X) × C(X) → C(X) satisfying ||f⋄g|| = ||f|| ||g|| for all f,g ∈ C(X) is equivalent to the uncountability of X. This is derived from a bilinear version of Holsztyński's theorem [3] on isometries of C(X)-spaces, which is also proved in the paper.
We provide a complex version of a theorem due to Bednar and Lacey characterizing real -preduals. Hence we prove a characterization of complex -preduals via a complex barycentric mapping.
2000 Mathematics Subject Classification: 46B26, 46B03, 46B04.We prove that a Banach space X is weakly Lindelöf determined if (and only if) each non-separable Banach space isomorphic to a complemented subspace of X has a projectional resolution of the identity. This answers a question posed by S. Mercourakis and S. Negrepontis and yields a converse of Amir-Lindenstrauss’ theorem. We also prove that a Banach space of the form C(K) where K is a continuous image of a Valdivia compactum is weakly Lindelöf...