The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 571

Showing per page

On a decomposition of Banach spaces

Jakub Duda (2007)

Colloquium Mathematicae

By using D. Preiss' approach to a construction from a paper by J. Matoušek and E. Matoušková, and some results of E. Matoušková, we prove that we can decompose a separable Banach space with modulus of convexity of power type p as a union of a ball small set (in a rather strong symmetric sense) and a set which is Aronszajn null. This improves an earlier unpublished result of E. Matoušková. As a corollary, in each separable Banach space with modulus of convexity of power type p, there exists a closed...

On a discrete version of the antipodal theorem

Krzysztof Oleszkiewicz (1996)

Fundamenta Mathematicae

The classical theorem of Borsuk and Ulam [2] says that for any continuous mapping f : S k k there exists a point x S k such that f(-x) = f(x). In this note a discrete version of the antipodal theorem is proved in which S k is replaced by the set of vertices of a high-dimensional cube equipped with Hamming’s metric. In place of equality we obtain some optimal estimates of i n f x | | f ( x ) - f ( - x ) | | which were previously known (as far as the author knows) only for f linear (cf. [1]).

On a dual locally uniformly rotund norm on a dual Vašák space

Marián Fabian (1991)

Studia Mathematica

We transfer a renorming method of transfer, due to G. Godefroy, from weakly compactly generated Banach spaces to Vašák, i.e., weakly K-countably determined Banach spaces. Thus we obtain a new construction of a locally uniformly rotund norm on a Vašák space. A further cultivation of this method yields the new result that every dual Vašák space admits a dual locally uniformly rotund norm.

On a functional-analysis approach to orthogonal sequences problems.

Vladimir P. Fonf, Anatolij M. Plichko, V. V. Shevchik (2001)

RACSAM

Sea T un operador lineal acotado e inyectivo de un espacio de Banach X en un espacio de Hilbert H con rango denso y sea {xn} ⊂ X una sucesión tal que {Txn} es ortogonal. Se estudian propiedades de {Txn} dependientes de propiedades de {xn}. También se estudia la ""situación opuesta"", es decir, la acción de un operador T : H → X sobre sucesiones ortogonales.

Currently displaying 1 – 20 of 571

Page 1 Next