Factorable and strictly singular operators in a product space
In this paper we show that a Rosenthal operator factors through a Banach space containing no isomorphs of l1.
We review several results on interpolation of Banach algebras and factorization of weakly compact homomorphisms. We also establish a new result on interpolation of multilinear operators.
It is proved that every positive Banach-Saks operator T: E → F between Banach lattices E and F factors through a Banach lattice with the Banach-Saks property, provided that F has order continuous norm. By means of an example we show that this order continuity condition cannot be removed. In addition, some domination results, in the Dodds-Fremlin sense, are obtained for the class of Banach-Saks operators.
Let X be a Banach space and ν a countably additive X-valued measure defined on a σ-algebra. We discuss some generation properties of the Banach space L¹(ν) and its connection with uniform Eberlein compacta. In this way, we provide a new proof that L¹(ν) is weakly compactly generated and embeds isomorphically into a Hilbert generated Banach space. The Davis-Figiel-Johnson-Pełczyński factorization of the integration operator is also analyzed. As a result, we prove that if is both completely continuous...
We prove a basic property of continuous multilinear mappings between topological vector spaces, from which we derive an easy proof of the fact that a multilinear mapping (and a polynomial) between topological vector spaces is weakly continuous on weakly bounded sets if and only if it is weakly uniformly} continuous on weakly bounded sets. This result was obtained in 1983 by Aron, Hervés and Valdivia for polynomials between Banach spaces, and it also holds if the weak topology is replaced by a coarser...
For infinite dimensional Banach spaces X we investigate the maximal size of a family of pairwise almost disjoint normalized Hamel bases of X, where two sets A and B are said to be almost disjoint if the cardinality of A ∩ B is smaller than the cardinality of either A or B.
In this article we prove the Fatou's Lemma and Lebesgue's Convergence Theorem [10].MML identifier: MESFUN10, version: 7.9.01 4.101.1015